IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v91y2016icp329-340.html
   My bibliography  Save this article

The impact of building orientation and discount rates on a Portuguese reference building refurbishment decision

Author

Listed:
  • Brandão de Vasconcelos, Ana
  • Cabaço, António
  • Pinheiro, Manuel Duarte
  • Manso, Armando

Abstract

Refurbishment, as part of the construction industry, has a strong global impact, not only from the viewpoint of economies but also from social and energy-efficiency perspectives. A thermal refurbishment process, in particular, involves numerous decisions and choices; the decision-makers being ultimately confronted with two major questions: which criterion should be adopted in the choice of the refurbishment construction solutions and which refurbishment construction solutions should be chosen?

Suggested Citation

  • Brandão de Vasconcelos, Ana & Cabaço, António & Pinheiro, Manuel Duarte & Manso, Armando, 2016. "The impact of building orientation and discount rates on a Portuguese reference building refurbishment decision," Energy Policy, Elsevier, vol. 91(C), pages 329-340.
  • Handle: RePEc:eee:enepol:v:91:y:2016:i:c:p:329-340
    DOI: 10.1016/j.enpol.2016.01.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421516300210
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2016.01.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Morrissey, J. & Meyrick, B. & Sivaraman, D. & Horne, R.E. & Berry, M., 2013. "Cost-benefit assessment of energy efficiency investments: Accounting for future resources, savings and risks in the Australian residential sector," Energy Policy, Elsevier, vol. 54(C), pages 148-159.
    2. Ganiç, Neşe & Yılmaz, A. Zerrin, 2014. "Adaptation of the cost optimal level calculation method of Directive 2010/31/EU considering the influence of Turkish national factors," Applied Energy, Elsevier, vol. 123(C), pages 94-107.
    3. Brandão de Vasconcelos, Ana & Pinheiro, Manuel Duarte & Manso, Armando & Cabaço, António, 2015. "A Portuguese approach to define reference buildings for cost-optimal methodologies," Applied Energy, Elsevier, vol. 140(C), pages 316-328.
    4. Pacheco, R. & Ordóñez, J. & Martínez, G., 2012. "Energy efficient design of building: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3559-3573.
    5. Banaitiene, Nerija & Banaitis, Audrius & Kaklauskas, Arturas & Zavadskas, Edmundas Kazimieras, 2008. "Evaluating the life cycle of a building: A multivariant and multiple criteria approach," Omega, Elsevier, vol. 36(3), pages 429-441, June.
    6. Baglivo, Cristina & Congedo, Paolo Maria & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate," Energy, Elsevier, vol. 83(C), pages 560-575.
    7. Hemsath, Timothy L. & Alagheband Bandhosseini, Kaveh, 2015. "Sensitivity analysis evaluating basic building geometry's effect on energy use," Renewable Energy, Elsevier, vol. 76(C), pages 526-538.
    8. Kievani, Ramin. & Tah, Joseph H.M. & Kurul, Esra. & Habanda, Henry., 2010. "Green jobs creation through sustainable refurbishment in the developing countries," ILO Working Papers 994576813402676, International Labour Organization.
    9. Heiselberg, Per & Brohus, Henrik & Hesselholt, Allan & Rasmussen, Henrik & Seinre, Erkki & Thomas, Sara, 2009. "Application of sensitivity analysis in design of sustainable buildings," Renewable Energy, Elsevier, vol. 34(9), pages 2030-2036.
    10. Tol, Richard S.J., 2012. "A cost–benefit analysis of the EU 20/20/2020 package," Energy Policy, Elsevier, vol. 49(C), pages 288-295.
    11. Li, Bingyun & Duan, Yuhua & Luebke, David & Morreale, Bryan, 2013. "Advances in CO2 capture technology: A patent review," Applied Energy, Elsevier, vol. 102(C), pages 1439-1447.
    12. Hernandez, Patxi & Kenny, Paul, 2011. "Development of a methodology for life cycle building energy ratings," Energy Policy, Elsevier, vol. 39(6), pages 3779-3788, June.
    13. Ferreira, Joaquim & Pinheiro, Manuel Duarte & Brito, Jorge de, 2013. "Refurbishment decision support tools review—Energy and life cycle as key aspects to sustainable refurbishment projects," Energy Policy, Elsevier, vol. 62(C), pages 1453-1460.
    14. repec:cmj:journl:y:2013:i:27:stetm is not listed on IDEAS
    15. Sadineni, Suresh B. & Madala, Srikanth & Boehm, Robert F., 2011. "Passive building energy savings: A review of building envelope components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3617-3631.
    16. Stojiljković, Mirko M. & Ignjatović, Marko G. & Vučković, Goran D., 2015. "Greenhouse gases emission assessment in residential sector through buildings simulations and operation optimization," Energy, Elsevier, vol. 92(P3), pages 420-434.
    17. Jeremy C. Bellah & Kunpeng Li & Pamela J. Zelbst & Qiannong Gu, 2013. "Use of RFID Technology for Automatic Job Costing," International Journal of Information Systems and Social Change (IJISSC), IGI Global, vol. 4(3), pages 72-88, July.
    18. repec:ilo:ilowps:457681 is not listed on IDEAS
    19. Florides, G. A. & Tassou, S. A. & Kalogirou, S. A. & Wrobel, L. C., 2002. "Measures used to lower building energy consumption and their cost effectiveness," Applied Energy, Elsevier, vol. 73(3-4), pages 299-328, November.
    20. Mihaela ȘTEȚ, 2013. "Financial Implications Of Technological Progress," SEA - Practical Application of Science, Romanian Foundation for Business Intelligence, Editorial Department, issue 1, pages 192-199, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vahidreza Yousefi & Siamak Haji Yakhchali & Jolanta Tamošaitienė, 2019. "Application of Duration Measure in Quantifying the Sensitivity of Project Returns to Changes in Discount Rates," Administrative Sciences, MDPI, vol. 9(1), pages 1-14, February.
    2. Jeongyoon Oh & Taehoon Hong & Hakpyeong Kim & Jongbaek An & Kwangbok Jeong & Choongwan Koo, 2017. "Advanced Strategies for Net-Zero Energy Building: Focused on the Early Phase and Usage Phase of a Building’s Life Cycle," Sustainability, MDPI, vol. 9(12), pages 1-52, December.
    3. Younghoon Kwak & Jeong-A Kang & Jung-Ho Huh & Tae-Hyoung Kim & Young-Sun Jeong, 2019. "An Analysis of the Effectiveness of Greenhouse Gas Reduction Policy for Office Building Design in South Korea," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    4. Li, Y. & Arulnathan, V. & Heidari, M.D. & Pelletier, N., 2022. "Design considerations for net zero energy buildings for intensive, confined poultry production: A review of current insights, knowledge gaps, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Ballarini, Ilaria & Corrado, Vincenzo & Madonna, Francesco & Paduos, Simona & Ravasio, Franco, 2017. "Energy refurbishment of the Italian residential building stock: energy and cost analysis through the application of the building typology," Energy Policy, Elsevier, vol. 105(C), pages 148-160.
    6. Younghoon Kwak & Jeonga Kang & Sun-Hye Mun & Young-Sun Jeong & Jung-Ho Huh, 2020. "Development and Application of a Flexible Modeling Approach to Reference Buildings for Energy Analysis," Energies, MDPI, vol. 13(21), pages 1-22, November.
    7. Maria Ferrara & Valentina Monetti & Enrico Fabrizio, 2018. "Cost-Optimal Analysis for Nearly Zero Energy Buildings Design and Optimization: A Critical Review," Energies, MDPI, vol. 11(6), pages 1-32, June.
    8. Chi, Fang'ai & Zhang, Jianxun & Li, Gaomei & Zhu, Zongzhou & Bart, Dewancker, 2019. "An investigation of the impact of Building Azimuth on energy consumption in sizhai traditional dwellings," Energy, Elsevier, vol. 180(C), pages 594-614.
    9. Dan Dobrotă & Gabriela Dobrotă & Tiberiu Dobrescu & Cristina Mohora, 2019. "The Redesigning of Tires and the Recycling Process to Maintain an Efficient Circular Economy," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
    10. Joana Fernandes & Maria Catarina Santos & Rui Castro, 2021. "Introductory Review of Energy Efficiency in Buildings Retrofits," Energies, MDPI, vol. 14(23), pages 1-18, December.
    11. Tori, Felipe & Bustamante, Waldo & Vera, Sergio, 2022. "Analysis of Net Zero Energy Buildings public policies at the residential building sector: A comparison between Chile and selected countries," Energy Policy, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Wei & Wen, Xiaodong & Li, Chaoen & Shao, Jingjing & Xu, Jianguo, 2023. "Predicting the energy consumption in buildings using the optimized support vector regression model," Energy, Elsevier, vol. 273(C).
    2. Raugei, Marco & Leccisi, Enrica, 2016. "A comprehensive assessment of the energy performance of the full range of electricity generation technologies deployed in the United Kingdom," Energy Policy, Elsevier, vol. 90(C), pages 46-59.
    3. Karunathilake, Hirushie & Hewage, Kasun & Sadiq, Rehan, 2018. "Opportunities and challenges in energy demand reduction for Canadian residential sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2005-2016.
    4. Østergård, Torben & Jensen, Rasmus L. & Maagaard, Steffen E., 2016. "Building simulations supporting decision making in early design – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 187-201.
    5. Brandão de Vasconcelos, Ana & Pinheiro, Manuel Duarte & Manso, Armando & Cabaço, António, 2015. "A Portuguese approach to define reference buildings for cost-optimal methodologies," Applied Energy, Elsevier, vol. 140(C), pages 316-328.
    6. Chau, C.K. & Xu, J.M. & Leung, T.M. & Ng, W.Y., 2017. "Evaluation of the impacts of end-of-life management strategies for deconstruction of a high-rise concrete framed office building," Applied Energy, Elsevier, vol. 185(P2), pages 1595-1603.
    7. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    8. Dietz, Annelore & Vera, Sergio & Bustamante, Waldo & Flamant, Gilles, 2020. "Multi-objective optimization to balance thermal comfort and energy use in a mining camp located in the Andes Mountains at high altitude," Energy, Elsevier, vol. 199(C).
    9. Stevanović, Sanja, 2013. "Optimization of passive solar design strategies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 177-196.
    10. Shi, Xing & Tian, Zhichao & Chen, Wenqiang & Si, Binghui & Jin, Xing, 2016. "A review on building energy efficient design optimization rom the perspective of architects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 872-884.
    11. Baloch, Ashfaque Ahmed & Shaikh, Pervez Hameed & Shaikh, Faheemullah & Leghari, Zohaib Hussain & Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam, 2018. "Simulation tools application for artificial lighting in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3007-3026.
    12. López, Marlén & Rubio, Ramón & Martín, Santiago & Ben Croxford,, 2017. "How plants inspire façades. From plants to architecture: Biomimetic principles for the development of adaptive architectural envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 692-703.
    13. Copiello, Sergio & Gabrielli, Laura & Bonifaci, Pietro, 2017. "Evaluation of energy retrofit in buildings under conditions of uncertainty: The prominence of the discount rate," Energy, Elsevier, vol. 137(C), pages 104-117.
    14. Thalfeldt, Martin & Pikas, Ergo & Kurnitski, Jarek & Voll, Hendrik, 2017. "Window model and 5 year price data sensitivity to cost-effective façade solutions for office buildings in Estonia," Energy, Elsevier, vol. 135(C), pages 685-697.
    15. Hemsath, Timothy L. & Alagheband Bandhosseini, Kaveh, 2015. "Sensitivity analysis evaluating basic building geometry's effect on energy use," Renewable Energy, Elsevier, vol. 76(C), pages 526-538.
    16. Sadineni, Suresh B. & Boehm, Robert F., 2012. "Measurements and simulations for peak electrical load reduction in cooling dominated climate," Energy, Elsevier, vol. 37(1), pages 689-697.
    17. Shaikh, Pervez Hameed & Nor, Nursyarizal Bin Mohd & Nallagownden, Perumal & Elamvazuthi, Irraivan & Ibrahim, Taib, 2014. "A review on optimized control systems for building energy and comfort management of smart sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 409-429.
    18. Tiantian Du & Sabine Jansen & Michela Turrin & Andy van den Dobbelsteen, 2020. "Effects of Architectural Space Layouts on Energy Performance: A Review," Sustainability, MDPI, vol. 12(5), pages 1-23, February.
    19. Zuo, Jian & Zhao, Zhen-Yu, 2014. "Green building research–current status and future agenda: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 271-281.
    20. Long, Linshuang & Ye, Hong & Gao, Yanfeng & Zou, Ruqiang, 2014. "Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings," Applied Energy, Elsevier, vol. 136(C), pages 89-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:91:y:2016:i:c:p:329-340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.