IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v123y2014icp94-107.html
   My bibliography  Save this article

Adaptation of the cost optimal level calculation method of Directive 2010/31/EU considering the influence of Turkish national factors

Author

Listed:
  • Ganiç, Neşe
  • Yılmaz, A. Zerrin

Abstract

In accordance with Directive 2010/31/EU (EPBD recast), all EU Member States are obliged to perform analysis on cost optimal levels of minimum energy performance requirements. Besides EU Member States, this EU directive influence candidate countries correspondingly. In order to establish national calculation methodologies for cost optimal energy performance levels, EU methodology framework proposes several main stages based on national variables.

Suggested Citation

  • Ganiç, Neşe & Yılmaz, A. Zerrin, 2014. "Adaptation of the cost optimal level calculation method of Directive 2010/31/EU considering the influence of Turkish national factors," Applied Energy, Elsevier, vol. 123(C), pages 94-107.
  • Handle: RePEc:eee:appene:v:123:y:2014:i:c:p:94-107
    DOI: 10.1016/j.apenergy.2014.02.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914001895
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.02.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Corgnati, Stefano Paolo & Fabrizio, Enrico & Filippi, Marco & Monetti, Valentina, 2013. "Reference buildings for cost optimal analysis: Method of definition and application," Applied Energy, Elsevier, vol. 102(C), pages 983-993.
    2. Annunziata, Eleonora & Frey, Marco & Rizzi, Francesco, 2013. "Towards nearly zero-energy buildings: The state-of-art of national regulations in Europe," Energy, Elsevier, vol. 57(C), pages 125-133.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brandão de Vasconcelos, Ana & Pinheiro, Manuel Duarte & Manso, Armando & Cabaço, António, 2015. "A Portuguese approach to define reference buildings for cost-optimal methodologies," Applied Energy, Elsevier, vol. 140(C), pages 316-328.
    2. Mohamed, Ayman & Hamdy, Mohamed & Hasan, Ala & Sirén, Kai, 2015. "The performance of small scale multi-generation technologies in achieving cost-optimal and zero-energy office building solutions," Applied Energy, Elsevier, vol. 152(C), pages 94-108.
    3. Thalfeldt, Martin & Pikas, Ergo & Kurnitski, Jarek & Voll, Hendrik, 2017. "Window model and 5 year price data sensitivity to cost-effective façade solutions for office buildings in Estonia," Energy, Elsevier, vol. 135(C), pages 685-697.
    4. Maria Ferrara & Valentina Monetti & Enrico Fabrizio, 2018. "Cost-Optimal Analysis for Nearly Zero Energy Buildings Design and Optimization: A Critical Review," Energies, MDPI, vol. 11(6), pages 1-32, June.
    5. Brandão de Vasconcelos, Ana & Cabaço, António & Pinheiro, Manuel Duarte & Manso, Armando, 2016. "The impact of building orientation and discount rates on a Portuguese reference building refurbishment decision," Energy Policy, Elsevier, vol. 91(C), pages 329-340.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D'Agostino, Delia & Parker, Danny, 2018. "A framework for the cost-optimal design of nearly zero energy buildings (NZEBs) in representative climates across Europe," Energy, Elsevier, vol. 149(C), pages 814-829.
    2. Aste, Niccolò & Manfren, Massimiliano & Marenzi, Giorgia, 2017. "Building Automation and Control Systems and performance optimization: A framework for analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 313-330.
    3. Caliskan, Hakan, 2015. "Thermodynamic and environmental analyses of biomass, solar and electrical energy options based building heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1016-1034.
    4. Cinzia Buratti & Francesco Asdrubali & Domenico Palladino & Antonella Rotili, 2015. "Energy Performance Database of Building Heritage in the Region of Umbria, Central Italy," Energies, MDPI, vol. 8(7), pages 1-18, July.
    5. Chwieduk, Bartosz & Chwieduk, Dorota, 2021. "Analysis of operation and energy performance of a heat pump driven by a PV system for space heating of a single family house in polish conditions," Renewable Energy, Elsevier, vol. 165(P2), pages 117-126.
    6. Brandão de Vasconcelos, Ana & Pinheiro, Manuel Duarte & Manso, Armando & Cabaço, António, 2015. "A Portuguese approach to define reference buildings for cost-optimal methodologies," Applied Energy, Elsevier, vol. 140(C), pages 316-328.
    7. Bienvenido-Huertas, David & Moyano, Juan & Rodríguez-Jiménez, Carlos E. & Marín, David, 2019. "Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method," Applied Energy, Elsevier, vol. 233, pages 1-14.
    8. Olsthoorn, Mark & Schleich, Joachim & Faure, Corinne, 2019. "Exploring the diffusion of low-energy houses: An empirical study in the European Union," Energy Policy, Elsevier, vol. 129(C), pages 1382-1393.
    9. Aste, Niccolò & Adhikari, R.S. & Manfren, Massimiliano, 2013. "Cost optimal analysis of heat pump technology adoption in residential reference buildings," Renewable Energy, Elsevier, vol. 60(C), pages 615-624.
    10. Piccardo, C. & Dodoo, A. & Gustavsson, L. & Tettey, U.Y.A., 2020. "Retrofitting with different building materials: Life-cycle primary energy implications," Energy, Elsevier, vol. 192(C).
    11. Seungjun Roh & Sungho Tae & Rakhyun Kim, 2018. "Analysis of Embodied Environmental Impacts of Korean Apartment Buildings Considering Major Building Materials," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    12. Amjad Ali & Marc Audi & Ismail Senturk & Yannick Roussel, 2022. "Do Sectoral Growth Promote CO2 Emissions in Pakistan? Time Series Analysis in Presence of Structural Break," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 410-425, March.
    13. Fabio Magrassi & Adriana Del Borghi & Michela Gallo & Carlo Strazza & Michela Robba, 2016. "Optimal Planning of Sustainable Buildings: Integration of Life Cycle Assessment and Optimization in a Decision Support System (DSS)," Energies, MDPI, vol. 9(7), pages 1-15, June.
    14. Gliedt, Travis & Hoicka, Christina E., 2015. "Energy upgrades as financial or strategic investment? Energy Star property owners and managers improving building energy performance," Applied Energy, Elsevier, vol. 147(C), pages 430-443.
    15. Walsh, Angélica & Cóstola, Daniel & Labaki, Lucila Chebel, 2018. "Performance-based validation of climatic zoning for building energy efficiency applications," Applied Energy, Elsevier, vol. 212(C), pages 416-427.
    16. Fabrizio Battisti & Orazio Campo, 2021. "The Assessment of Density Bonus in Building Renovation Interventions. The Case of the City of Florence in Italy," Land, MDPI, vol. 10(12), pages 1-21, December.
    17. Olivieri, L. & Caamaño-Martín, E. & Moralejo-Vázquez, F.J. & Martín-Chivelet, N. & Olivieri, F. & Neila-Gonzalez, F.J., 2014. "Energy saving potential of semi-transparent photovoltaic elements for building integration," Energy, Elsevier, vol. 76(C), pages 572-583.
    18. Walsh, Angélica & Cóstola, Daniel & Labaki, Lucila Chebel, 2022. "Performance-based climatic zoning method for building energy efficiency applications using cluster analysis," Energy, Elsevier, vol. 255(C).
    19. Hassan A. Sleiman & Steffen Hempel & Roberto Traversari & Sander Bruinenberg, 2017. "An Assisted Workflow for the Early Design of Nearly Zero Emission Healthcare Buildings," Energies, MDPI, vol. 10(7), pages 1-26, July.
    20. Chung, Mo & Park, Hwa-Choon, 2015. "Comparison of building energy demand for hotels, hospitals, and offices in Korea," Energy, Elsevier, vol. 92(P3), pages 383-393.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:123:y:2014:i:c:p:94-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.