IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v52y2013icp429-438.html
   My bibliography  Save this article

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption

Author

Listed:
  • Peterson, Scott B.
  • Michalek, Jeremy J.

Abstract

Federal electric vehicle (EV) policies in the United States currently include vehicle purchase subsidies linked to EV battery capacity and subsidies for installing charging stations. We assess the cost-effectiveness of increased battery capacity vs. nondomestic charging infrastructure installation for plug-in hybrid electric vehicles as alternate methods to reduce gasoline consumption for cars, trucks, and SUVs in the US. We find across a wide range of scenarios that the least-cost solution is for more drivers to switch to low-capacity plug-in hybrid electric vehicles (short electric range with gasoline backup for long trips) or gasoline-powered hybrid electric vehicles. If more gasoline savings are needed per vehicle, nondomestic charging infrastructure installation is substantially more expensive than increased battery capacity per gallon saved, and both approaches have higher costs than US oil premium estimates. Cost effectiveness of all subsidies are lower under a binding fuel economy standard. Comparison of results to the structure of current federal subsidies shows that policy is not aligned with fuel savings potential, and we discuss issues and alternatives.

Suggested Citation

  • Peterson, Scott B. & Michalek, Jeremy J., 2013. "Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption," Energy Policy, Elsevier, vol. 52(C), pages 429-438.
  • Handle: RePEc:eee:enepol:v:52:y:2013:i:c:p:429-438
    DOI: 10.1016/j.enpol.2012.09.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512008415
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.09.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Congressional Budget Office, 2012. "Effects of Federal Tax Credits for the Purchase of Electric Vehicles," Reports 43576, Congressional Budget Office.
    2. Congressional Budget Office, 2012. "Effects of Federal Tax Credits for the Purchase of Electric Vehicles," Reports 43576, Congressional Budget Office.
    3. Kurani, Kenneth S & Turrentine, Tom, 2004. "Automobile Buyer Decisions about Fuel Economy and Fuel Efficiency," Institute of Transportation Studies, Working Paper Series qt6zq891d1, Institute of Transportation Studies, UC Davis.
    4. Kurani, Ken & Turrentine, Thomas, 2004. "Automobile Buyer Decisions about Fuel Economy and Fuel Efficiency," Institute of Transportation Studies, Working Paper Series qt5hh5k3j3, Institute of Transportation Studies, UC Davis.
    5. Traut, Elizabeth & Hendrickson, Chris & Klampfl, Erica & Liu, Yimin & Michalek, Jeremy J., 2012. "Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost," Energy Policy, Elsevier, vol. 51(C), pages 524-534.
    6. Congressional Budget Office, 2012. "Effects of Federal Tax Credits for the Purchase of Electric Vehicles," Reports 43576, Congressional Budget Office.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carley, Sanya & Zirogiannis, Nikolaos & Siddiki, Saba & Duncan, Denvil & Graham, John D., 2019. "Overcoming the shortcomings of U.S. plug-in electric vehicle policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Karabasoglu, Orkun & Michalek, Jeremy, 2013. "Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains," Energy Policy, Elsevier, vol. 60(C), pages 445-461.
    3. J. R. DeShazo, 2016. "Improving Incentives for Clean Vehicle Purchases in the United States: Challenges and Opportunities," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 149-165.
    4. Jianwei Xing & Benjamin Leard & Shanjun Li, 2019. "What Does an Electric Vehicle Replace?," NBER Working Papers 25771, National Bureau of Economic Research, Inc.
    5. Shanjun Li & Yiyi Zhou, 2015. "Dynamics of Technology Adoption and Critical Mass: The Case of U.S. Electric Vehicle Market," Working Papers 15-10, NET Institute.
    6. Xing, Jianwei & Leard, Benjamin & Li, Shanjun, 2021. "What does an electric vehicle replace?," Journal of Environmental Economics and Management, Elsevier, vol. 107(C).
    7. Newell, Richard G. & Pizer, William A. & Raimi, Daniel, 2019. "U.S. federal government subsidies for clean energy: Design choices and implications," Energy Economics, Elsevier, vol. 80(C), pages 831-841.
    8. DeShazo, J.R. & Sheldon, Tamara L. & Carson, Richard T., 2017. "Designing policy incentives for cleaner technologies: Lessons from California's plug-in electric vehicle rebate program," Journal of Environmental Economics and Management, Elsevier, vol. 84(C), pages 18-43.
    9. Dumortier, Jerome & Siddiki, Saba & Carley, Sanya & Cisney, Joshua & Krause, Rachel M. & Lane, Bradley W. & Rupp, John A. & Graham, John D., 2015. "Effects of providing total cost of ownership information on consumers’ intent to purchase a hybrid or plug-in electric vehicle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 72(C), pages 71-86.
    10. Heffner, Reid R. & Kurani, Ken & Turrentine, Tom, 2005. "Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles," Institute of Transportation Studies, Working Paper Series qt5gd4n9nc, Institute of Transportation Studies, UC Davis.
    11. Green, Erin H. & Skerlos, Steven J. & Winebrake, James J., 2014. "Increasing electric vehicle policy efficiency and effectiveness by reducing mainstream market bias," Energy Policy, Elsevier, vol. 65(C), pages 562-566.
    12. Kay, Andrew I. & Noland, Robert B. & Rodier, Caroline J., 2014. "Achieving reductions in greenhouse gases in the US road transportation sector," Energy Policy, Elsevier, vol. 69(C), pages 536-545.
    13. Ji, Wei, 2018. "Data-Driven Behavior Analysis and Implications in Plug-in Electric Vehicle Policy Studies," Institute of Transportation Studies, Working Paper Series qt6dw4d18t, Institute of Transportation Studies, UC Davis.
    14. Jenn, Alan & Azevedo, Inês L. & Michalek, Jeremy J., 2019. "Alternative-fuel-vehicle policy interactions increase U.S. greenhouse gas emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 396-407.
    15. Zhang, Xiang, 2014. "Reference-dependent electric vehicle production strategy considering subsidies and consumer trade-offs," Energy Policy, Elsevier, vol. 67(C), pages 422-430.
    16. Heffner, Reid R. & Kurani, Kenneth S & Turrentine, Tom, 2007. "Symbolism and the Adoption of Fuel-Cell Vehicles," Institute of Transportation Studies, Working Paper Series qt5934t20f, Institute of Transportation Studies, UC Davis.
    17. Musti, Sashank & Kockelman, Kara M., 2011. "Evolution of the household vehicle fleet: Anticipating fleet composition, PHEV adoption and GHG emissions in Austin, Texas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(8), pages 707-720, October.
    18. Heffner, Reid R. & Kurani, Kenneth S & Turrentine, Tom, 2005. "Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles," Institute of Transportation Studies, Working Paper Series qt812778bc, Institute of Transportation Studies, UC Davis.
    19. Eggert, Anthony & Kurani, Kenneth S & Turrentine, Tom & Ogden, Joan M & Sperling, Dan & Winston, Emily, 2005. "Hydrogen and Fuel Cells - Refining the Message Initiating a National Dialogue and Educational Agenda," Institute of Transportation Studies, Working Paper Series qt5nv1k2p0, Institute of Transportation Studies, UC Davis.
    20. Eckert, Jony Javorski & Silva, Fabrício L. & da Silva, Samuel Filgueira & Bueno, André Valente & de Oliveira, Mona Lisa Moura & Silva, Ludmila C.A., 2022. "Optimal design and power management control of hybrid biofuel–electric powertrain," Applied Energy, Elsevier, vol. 325(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:52:y:2013:i:c:p:429-438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.