IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i5p1660-1677.html
   My bibliography  Save this article

Pathways for the North European electricity supply

Author

Listed:
  • Odenberger, M.
  • Unger, T.
  • Johnsson, F.

Abstract

This paper investigates the development of the electricity-supply systems in Northern Europe (Germany, UK, Denmark, Finland, Sweden and Norway) until the year 2050. The focus is on the response to an assumed common stringent CO2-reduction target and on the role of carbon capture and storage technologies (CCS). Special emphasis is put on turn-over in capital stock, timing of investments and the infrastructural implications of large-scale introduction of CCS. The analysis is carried out through scenario analysis with the aid of a techno-economic model, in which a case including CCS is compared to a case excluding this option. The phase out of the present capital stock (power plants) is included from the Chalmers energy infrastructure databases, which gives information on present and planned power plants down to block level for plants exceeding 10MW net electric power. Assuming technical lifetimes for these plants yield residual capacities in each year, here referred to as the phase-out pattern. CCS technologies are assumed to become commercially available in 2020. The age structure of the power plants indicate that full turn-over in capital stock will take several decades with the present generation capacities accounting for around 50% of generated electricity in 2020. The results show that CO2 emission reductions of 20% and 60% by the years 2020 and 2050, respectively, relative to 1990, can be met at a marginal cost of abatement of about 25-40[euro]/ton CO2 over the period studied if CCS is included as an option from 2020. At the same time the marginal cost of generating electricity lies in the range 45-60[euro]/MWh. Excluding CCS raises the marginal cost of abatement with about 10[euro]/ton CO2, whereas the marginal cost of electricity generation increases with roughly 5-10[euro]/MWh. The CO2 target by the year 2020 is met by implementation of renewable electricity and fuel shifting from coal to gas. After 2020 CCS technologies constitute an attractive way for cost efficient and almost CO2-free base load. However, wide-spread application of CCS is an infrastructural challenge with respect to implementing capture plants as well as building up a corresponding CO2 infrastructure for transportation and storage as well as in coal supply systems. Given the price assumptions applied, gas may not be competitive once CCS enters the system causing early retirements of such units or possibly stranded assets.

Suggested Citation

  • Odenberger, M. & Unger, T. & Johnsson, F., 2009. "Pathways for the North European electricity supply," Energy Policy, Elsevier, vol. 37(5), pages 1660-1677, May.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:5:p:1660-1677
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00768-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grubb, Michael & Butler, Lucy & Twomey, Paul, 2006. "Diversity and security in UK electricity generation: The influence of low-carbon objectives," Energy Policy, Elsevier, vol. 34(18), pages 4050-4062, December.
    2. Kjarstad, Jan & Johnsson, Filip, 2007. "The European power plant infrastructure--Presentation of the Chalmers energy infrastructure database with applications," Energy Policy, Elsevier, vol. 35(7), pages 3643-3664, July.
    3. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, January.
    4. Rafaj, Peter & Kypreos, Socrates, 2007. "Internalisation of external cost in the power generation sector: Analysis with Global Multi-regional MARKAL model," Energy Policy, Elsevier, vol. 35(2), pages 828-843, February.
    5. Odenberger, M. & Johnsson, F., 2007. "Achieving 60% CO2 reductions within the UK energy system--Implications for the electricity generation sector," Energy Policy, Elsevier, vol. 35(4), pages 2433-2452, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taljegard, M. & Göransson, L. & Odenberger, M. & Johnsson, F., 2019. "Impacts of electric vehicles on the electricity generation portfolio – A Scandinavian-German case study," Applied Energy, Elsevier, vol. 235(C), pages 1637-1650.
    2. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2019. "Electric Vehicles as Flexibility Management Strategy for the Electricity System—A Comparison between Different Regions of Europe," Energies, MDPI, vol. 12(13), pages 1-19, July.
    3. Göransson, Lisa & Goop, Joel & Unger, Thomas & Odenberger, Mikael & Johnsson, Filip, 2014. "Linkages between demand-side management and congestion in the European electricity transmission system," Energy, Elsevier, vol. 69(C), pages 860-872.
    4. Zack Norwood & Joel Goop & Mikael Odenberger, 2017. "The Future of the European Electricity Grid Is Bright: Cost Minimizing Optimization Shows Solar with Storage as Dominant Technologies to Meet European Emissions Targets to 2050," Energies, MDPI, vol. 10(12), pages 1-31, December.
    5. Reichenberg, Lina & Siddiqui, Afzal S. & Wogrin, Sonja, 2018. "Policy implications of downscaling the time dimension in power system planning models to represent variability in renewable output," Energy, Elsevier, vol. 159(C), pages 870-877.
    6. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    7. Nadine Heitmann & Christine Bertram & Daiju Narita, 2012. "Embedding CCS infrastructure into the European electricity system: a policy coordination problem," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 669-686, August.
    8. Knuepfer, K. & Rogalski, N. & Knuepfer, A. & Esteban, M. & Shibayama, T., 2022. "A reliable energy system for Japan with merit order dispatch, high variable renewable share and no nuclear power," Applied Energy, Elsevier, vol. 328(C).
    9. Chaturvedi, Vaibhav & Clarke, Leon & Edmonds, James & Calvin, Katherine & Kyle, Page, 2014. "Capital investment requirements for greenhouse gas emissions mitigation in power generation on near term to century time scales and global to regional spatial scales," Energy Economics, Elsevier, vol. 46(C), pages 267-278.
    10. Lauri, Pekka & Kallio, A. Maarit I. & Schneider, Uwe A., 2012. "Price of CO2 emissions and use of wood in Europe," Forest Policy and Economics, Elsevier, vol. 15(C), pages 123-131.
    11. Garðarsdóttir, Stefanía Ó. & Göransson, Lisa & Normann, Fredrik & Johnsson, Filip, 2018. "Improving the flexibility of coal-fired power generators: Impact on the composition of a cost-optimal electricity system," Applied Energy, Elsevier, vol. 209(C), pages 277-289.
    12. Sarker, Shiplu, 2016. "Feasibility analysis of a renewable hybrid energy system with producer gas generator fulfilling remote household electricity demand in Southern Norway," Renewable Energy, Elsevier, vol. 87(P1), pages 772-781.
    13. Fan, Lin & Hobbs, Benjamin F. & Norman, Catherine S., 2010. "Risk aversion and CO2 regulatory uncertainty in power generation investment: Policy and modeling implications," Journal of Environmental Economics and Management, Elsevier, vol. 60(3), pages 193-208, November.
    14. Goop, Joel & Nyholm, Emil & Odenberger, Mikael & Johnsson, Filip, 2021. "Impact of electricity market feedback on investments in solar photovoltaic and battery systems in Swedish single-family dwellings," Renewable Energy, Elsevier, vol. 163(C), pages 1078-1091.
    15. Aryanpur, Vahid & Shafiei, Ehsan, 2015. "Optimal deployment of renewable electricity technologies in Iran and implications for emissions reductions," Energy, Elsevier, vol. 91(C), pages 882-893.
    16. Bertram, Christine & Heitmann, Nadine & Narita, Daiju & Schwedeler, Markus, 2012. "How will Germany's CCS policy affect the development of a European CO2 transport infrastructure?," Kiel Policy Brief 43, Kiel Institute for the World Economy (IfW Kiel).
    17. Ullmark, Jonathan & Göransson, Lisa & Chen, Peiyuan & Bongiorno, Massimo & Johnsson, Filip, 2021. "Inclusion of frequency control constraints in energy system investment modeling," Renewable Energy, Elsevier, vol. 173(C), pages 249-262.
    18. Goop, Joel & Odenberger, Mikael & Johnsson, Filip, 2017. "The effect of high levels of solar generation on congestion in the European electricity transmission grid," Applied Energy, Elsevier, vol. 205(C), pages 1128-1140.
    19. Olsson, Linda & Wetterlund, Elisabeth & Söderström, Mats, 2015. "Assessing the climate impact of district heating systems with combined heat and power production and industrial excess heat," Resources, Conservation & Recycling, Elsevier, vol. 96(C), pages 31-39.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kannan, R., 2009. "Uncertainties in key low carbon power generation technologies - Implication for UK decarbonisation targets," Applied Energy, Elsevier, vol. 86(10), pages 1873-1886, October.
    2. Ashraf-Ball, Hezlin & Oswald, Andrew J. & Oswald, James I., 2009. "Hydrogen Transport and the Spatial Requirements of Renewable Energy," The Warwick Economics Research Paper Series (TWERPS) 903, University of Warwick, Department of Economics.
    3. Koji Tokimatsu & Louis Dupuy & Nick Hanley, 2019. "Using Genuine Savings for Climate Policy Evaluation with an Integrated Assessment Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 281-307, January.
    4. Wilson, Ian Allan Grant & McGregor, Peter G. & Hall, Peter J., 2010. "Energy storage in the UK electrical network: Estimation of the scale and review of technology options," Energy Policy, Elsevier, vol. 38(8), pages 4099-4106, August.
    5. Stéphane Hallegatte, 2008. "A Proposal for a New Prescriptive Discounting Scheme: The Intergenerational Discount Rate," Working Papers 2008.47, Fondazione Eni Enrico Mattei.
    6. Strand, Jon, 2011. "Carbon offsets with endogenous environmental policy," Energy Economics, Elsevier, vol. 33(2), pages 371-378, March.
    7. Hughes, Larry, 2010. "Meeting residential space heating demand with wind-generated electricity," Renewable Energy, Elsevier, vol. 35(8), pages 1765-1772.
    8. Oliver Schenker, 2013. "Exchanging Goods and Damages: The Role of Trade on the Distribution of Climate Change Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(2), pages 261-282, February.
    9. Alejandro Lopez-Feldman, 2013. "Climate change, agriculture, and poverty: A household level analysis for rural Mexico," Economics Bulletin, AccessEcon, vol. 33(2), pages 1126-1139.
    10. Bikki Jaggi & Alessandra Allini & Riccardo Macchioni & Annamaria Zampella, 2018. "Do investors find carbon information useful? Evidence from Italian firms," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 1031-1056, May.
    11. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.
    12. Richard Tol, 2011. "Regulating knowledge monopolies: the case of the IPCC," Climatic Change, Springer, vol. 108(4), pages 827-839, October.
    13. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    14. Grüll, Georg & Taschini, Luca, 2011. "Cap-and-trade properties under different hybrid scheme designs," Journal of Environmental Economics and Management, Elsevier, vol. 61(1), pages 107-118, January.
    15. Sam Fankhauser & Cameron Hepburn, 2009. "Carbon markets in space and time," GRI Working Papers 3, Grantham Research Institute on Climate Change and the Environment.
    16. Maxmillan Martin & Yi hyun Kang & Motasim Billah & Tasneem Siddiqui & Richard Black & Dominic Kniveton, 2017. "Climate-influenced migration in Bangladesh: The need for a policy realignment," Development Policy Review, Overseas Development Institute, vol. 35, pages 357-379, October.
    17. Dietz, Simon & Gollier, Christian & Kessler, Louise, 2018. "The climate beta," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 258-274.
    18. Göransson, Lisa & Goop, Joel & Unger, Thomas & Odenberger, Mikael & Johnsson, Filip, 2014. "Linkages between demand-side management and congestion in the European electricity transmission system," Energy, Elsevier, vol. 69(C), pages 860-872.
    19. Stefano Bartolini & Francesco Sarracino, 2021. "Happier and Sustainable. Possibilities for a post-growth society," Department of Economics University of Siena 855, Department of Economics, University of Siena.
    20. Sheng, Yu & Xu, Xinpeng, 2019. "The productivity impact of climate change: Evidence from Australia's Millennium drought," Economic Modelling, Elsevier, vol. 76(C), pages 182-191.

    More about this item

    Keywords

    Electricity generation CO2 abatement Modelling;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:5:p:1660-1677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.