IDEAS home Printed from https://ideas.repec.org/p/zbw/esprep/234468.html
   My bibliography  Save this paper

Why electricity market models yield different results: Carbon pricing in a model-comparison experiment

Author

Listed:
  • Ruhnau, Oliver
  • Bucksteeg, Michael
  • Ritter, David
  • Schmitz, Richard
  • Böttger, Diana
  • Koch, Matthias
  • Pöstges, Arne
  • Wiedmann, Michael
  • Hirth, Lion

Abstract

The European electricity industry, the dominant sector of the world’s largest cap-and-trade scheme, is one of the most-studied examples of carbon pricing. In particular, numerical models are often used to study the uncertain future development of carbon prices and emissions. While parameter uncertainty is often addressed through sensitivity analyses, the potential uncertainty of the models themselves remains unclear from existing single-model studies. Here, we investigate such model-related uncertainty by running a structured model comparison experiment, in which we exposed five numerical power sector models to aligned input parameters—finding stark model differences. At a carbon price of 27 EUR/t in 2030, the models estimate that European power sector emissions will decrease by 36–57% when compared to 2016. Most of this variation can be explained by the extent to which models consider the market-driven decommissioning of coal- and lignite-fired power plants. Higher carbon prices of 57 and 87 EUR/t yield a stronger decrease in carbon emissions, by 45–75% and 52–80%, respectively. The lower end of these ranges can be attributed to the short-term fuel switch captured by dispatch-only models. The higher reductions correspond to models that additionally consider market-based investment in renewables. By further studying cross-model variation in the remaining emissions at high carbon prices, we identify the representation of combined heat and power as another crucial driver of differences across model results.

Suggested Citation

  • Ruhnau, Oliver & Bucksteeg, Michael & Ritter, David & Schmitz, Richard & Böttger, Diana & Koch, Matthias & Pöstges, Arne & Wiedmann, Michael & Hirth, Lion, 2021. "Why electricity market models yield different results: Carbon pricing in a model-comparison experiment," EconStor Preprints 234468, ZBW - Leibniz Information Centre for Economics.
  • Handle: RePEc:zbw:esprep:234468
    Note: Please cite as: Ruhnau, Oliver, Michael Bucksteeg, David Ritter, Richard Schmitz, Diana Böttger, Matthias Koch, Arne Pöstges, Michael Wiedmann & Lion Hirth (2022): “Why electricity market models yield different results: Carbon pricing in a model-comparison experiment”, Renewable and Sustainable Energy Reviews, https://doi.org/10.1016/j.rser.2021.111701
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/234468/1/Ruhnau-et-al-2021-Why-electricity-market-models-EconStor.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Anke, Carl-Philipp & Hobbie, Hannes & Schreiber, Steffi & Möst, Dominik, 2020. "Coal phase-outs and carbon prices: Interactions between EU emission trading and national carbon mitigation policies," Energy Policy, Elsevier, vol. 144(C).
    2. Pfenninger, Stefan & Hirth, Lion & Schlecht, Ingmar & Schmid, Eva & Wiese, Frauke & Brown, Tom & Davis, Chris & Gidden, Matthew & Heinrichs, Heidi & Heuberger, Clara & Hilpert, Simon & Krien, Uwe & Ma, 2018. "Opening the black box of energy modelling: Strategies and lessons learned," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19, pages 63-71.
    3. Trepper, Katrin & Bucksteeg, Michael & Weber, Christoph, 2015. "Market splitting in Germany – New evidence from a three-stage numerical model of Europe," Energy Policy, Elsevier, vol. 87(C), pages 199-215.
    4. Ruhnau, Oliver & Bannik, Sergej & Otten, Sydney & Praktiknjo, Aaron & Robinius, Martin, 2019. "Direct or indirect electrification? A review of heat generation and road transport decarbonisation scenarios for Germany 2050," Energy, Elsevier, vol. 166(C), pages 989-999.
    5. Van den Bergh, Kenneth & Delarue, Erik & D'haeseleer, William, 2013. "Impact of renewables deployment on the CO2 price and the CO2 emissions in the European electricity sector," Energy Policy, Elsevier, vol. 63(C), pages 1021-1031.
    6. Mo, Jianlei & Schleich, Joachim & Fan, Ying, 2018. "Getting ready for future carbon abatement under uncertainty – Key factors driving investment with policy implications," Energy Economics, Elsevier, vol. 70(C), pages 453-464.
    7. Christoph Weber, Sina Heidari, and Michael Bucksteeg, 2021. "Coping with Uncertainties in the Electricity Sector - Methods for Decisions of Different Scope," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    8. Ritter, David & Heinemann, Christoph & Bauknecht, Dierk & Winger, Christian & Flachsbarth, Franziska, 2021. "Model-based evaluation of decentralised electricity markets at different phases of the German energy transition," EconStor Preprints 234104, ZBW - Leibniz Information Centre for Economics.
    9. Osorio, Sebastian & Pietzcker, Robert C. & Pahle, Michael & Edenhofer, Ottmar, 2020. "How to deal with the risks of phasing out coal in Germany," Energy Economics, Elsevier, vol. 87(C).
    10. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    11. Mundaca, Gabriela, 2017. "How much can CO2 emissions be reduced if fossil fuel subsidies are removed?," Energy Economics, Elsevier, vol. 64(C), pages 91-104.
    12. Bocklet, Johanna & Hintermayer, Martin & Schmidt, Lukas & Wildgrube, Theresa, 2019. "The reformed EU ETS - Intertemporal emission trading with restricted banking," Energy Economics, Elsevier, vol. 84(C).
    13. Oskar Lecuyer & Philippe Quirion, 2019. "Interaction between CO2 emissions trading and renewable energy subsidies under uncertainty: feed-in tariffs as a safety net against over-allocation," Climate Policy, Taylor & Francis Journals, vol. 19(8), pages 1002-1018, September.
    14. Ulrik Beck & Peter K. Kruse-Andersen, 2020. "Endogenizing the Cap in a Cap-and-Trade System: Assessing the Agreement on EU ETS Phase 4," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(4), pages 781-811, December.
    15. Bruninx, Kenneth & Ovaere, Marten & Delarue, Erik, 2020. "The long-term impact of the market stability reserve on the EU emission trading system," Energy Economics, Elsevier, vol. 89(C).
    16. Morales-España, Germán & Nycander, Elis & Sijm, Jos, 2021. "Reducing CO2 emissions by curtailing renewables: Examples from optimal power system operation," Energy Economics, Elsevier, vol. 99(C).
    17. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    18. David Ritter & Roland Meyer & Matthias Koch & Markus Haller & Dierk Bauknecht & Christoph Heinemann, 2019. "Effects of a Delayed Expansion of Interconnector Capacities in a High RES-E European Electricity System," Energies, MDPI, vol. 12(16), pages 1-32, August.
    19. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    20. John Weyant & Elmar Kriegler, 2014. "Preface and introduction to EMF 27," Climatic Change, Springer, vol. 123(3), pages 345-352, April.
    21. John Weyant & Brigitte Knopf & Enrica De Cian & Ilkka Keppo & Detlef P. van Vuuren, 2013. "Introduction To The Emf28 Study On Scenarios For Transforming The European Energy System," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-3.
    22. Pape, Christian & Hagemann, Simon & Weber, Christoph, 2016. "Are fundamentals enough? Explaining price variations in the German day-ahead and intraday power market," Energy Economics, Elsevier, vol. 54(C), pages 376-387.
    23. Heinrichs, Heidi & Jochem, Patrick & Fichtner, Wolf, 2014. "Including road transport in the EU ETS (European Emissions Trading System): A model-based analysis of the German electricity and transport sector," Energy, Elsevier, vol. 69(C), pages 708-720.
    24. Helgeson, Broghan & Peter, Jakob, 2020. "The role of electricity in decarbonizing European road transport – Development and assessment of an integrated multi-sectoral model," Applied Energy, Elsevier, vol. 262(C).
    25. Simon Quemin, 2020. "Using Supply-Side Policies to Raise Ambition: The Case of the EU ETS and the 2021 Review," Working Papers 2002, Chaire Economie du climat.
    26. Delarue, Erik & Van den Bergh, Kenneth, 2016. "Carbon mitigation in the electric power sector under cap-and-trade and renewables policies," Energy Policy, Elsevier, vol. 92(C), pages 34-44.
    27. Ruhnau, Oliver, 2022. "How flexible electricity demand stabilizes wind and solar market values: The case of hydrogen electrolyzers," Applied Energy, Elsevier, vol. 307(C).
    28. Bocklet, Johanna & Hintermayer, Martin & Schmidt, Lukas & Wildgrube, Theresa, 2019. "The Reformed EU ETS - Intertemporal Emission Trading with Restricted Banking," EWI Working Papers 2019-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    29. Richter, Jan, 2011. "DIMENSION - A Dispatch and Investment Model for European Electricity Markets," EWI Working Papers 2011-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    30. Pietzcker, Robert C. & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," Applied Energy, Elsevier, vol. 293(C).
    31. Osorio, Sebastian & Tietjen, Oliver & Pahle, Michael & Pietzcker, Robert C. & Edenhofer, Ottmar, 2021. "Reviewing the Market Stability Reserve in light of more ambitious EU ETS emission targets," Energy Policy, Elsevier, vol. 158(C).
    32. Gunnar Luderer & Valentina Bosetti & Michael Jakob & Marian Leimbach & Jan Steckel & Henri Waisman & Ottmar Edenhofer, 2012. "The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison," Climatic Change, Springer, vol. 114(1), pages 9-37, September.
    33. Pöstges, Arne & Bucksteeg, Michael & Ruhnau, Oliver & Böttger, Diana & Haller, Markus & Künle, Eglantine & Ritter, David & Schmitz, Richard & Wiedmann, Michael, 2022. "Phasing out coal: An impact analysis comparing five large-scale electricity market models," Applied Energy, Elsevier, vol. 319(C).
    34. Cialani, Catia & Mortazavi, Reza, 2018. "Household and industrial electricity demand in Europe," Energy Policy, Elsevier, vol. 122(C), pages 592-600.
    35. I. A. Grant Wilson & Iain Staffell, 2018. "Rapid fuel switching from coal to natural gas through effective carbon pricing," Nature Energy, Nature, vol. 3(5), pages 365-372, May.
    36. Brigitte Knopf & Michael Pahle & Hendrik Kondziella & Fabian Joas & Ottmar Edenhofer & Thomas Bruckner, 2014. "Germany's Nuclear Phase-out: Sensitivities and Impacts on Electricity Prices and CO2 Emissions," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    37. Hirth, Lion, 2016. "The benefits of flexibility: The value of wind energy with hydropower," Applied Energy, Elsevier, vol. 181(C), pages 210-223.
    38. Weigt, Hannes & Ellerman, Denny & Delarue, Erik, 2013. "CO2 abatement from renewables in the German electricity sector: Does a CO2 price help?," Energy Economics, Elsevier, vol. 40(S1), pages 149-158.
    39. Hirth, Lion & Ruhnau, Oliver & Sgarlato, Raffaele, 2021. "The European Electricity Market Model EMMA - Model Description," EconStor Preprints 244592, ZBW - Leibniz Information Centre for Economics.
    40. Gillich, Annika & Hufendiek, Kai & Klempp, Nikolai, 2020. "Extended policy mix in the power sector: How a coal phase-out redistributes costs and profits among power plants," Energy Policy, Elsevier, vol. 147(C).
    41. Pietzcker, Robert & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," EconStor Preprints 222579, ZBW - Leibniz Information Centre for Economics, revised 2021.
    42. Capros, Pantelis & Zazias, Georgios & Evangelopoulou, Stavroula & Kannavou, Maria & Fotiou, Theofano & Siskos, Pelopidas & De Vita, Alessia & Sakellaris, Konstantinos, 2019. "Energy-system modelling of the EU strategy towards climate-neutrality," Energy Policy, Elsevier, vol. 134(C).
    43. Ruhnau, Oliver, 2020. "Market-based renewables: How flexible hydrogen electrolyzers stabilize wind and solar market values," EconStor Preprints 227075, ZBW - Leibniz Information Centre for Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bucksteeg, Michael & Wiedmann, Michael & Pöstges, Arne & Haller, Markus & Böttger, Diana & Ruhnau, Oliver & Schmitz, Richard, 2022. "The transformation of integrated electricity and heat systems—Assessing mid-term policies using a model comparison approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Sun, Xiaocong & Bao, Minglei & Guo, Chao & Ding, Yi & Zheng, Chenghang & Gao, Xiang, 2024. "An equilibrium capacity expansion model for power systems considering Gencos' coupled decisions between carbon and electricity markets," Applied Energy, Elsevier, vol. 359(C).
    3. Prina, Matteo Giacomo & Nastasi, Benedetto & Groppi, Daniele & Misconel, Steffi & Garcia, Davide Astiaso & Sparber, Wolfram, 2022. "Comparison methods of energy system frameworks, models and scenario results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Ruhnau, Oliver, 2022. "How flexible electricity demand stabilizes wind and solar market values: The case of hydrogen electrolyzers," Applied Energy, Elsevier, vol. 307(C).
    5. Pöstges, Arne & Bucksteeg, Michael & Ruhnau, Oliver & Böttger, Diana & Haller, Markus & Künle, Eglantine & Ritter, David & Schmitz, Richard & Wiedmann, Michael, 2022. "Phasing out coal: An impact analysis comparing five large-scale electricity market models," Applied Energy, Elsevier, vol. 319(C).
    6. Dinh Hoa Nguyen & Andrew Chapman & Takeshi Tsuji, 2023. "Assessing the Optimal Contributions of Renewables and Carbon Capture and Storage toward Carbon Neutrality by 2050," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    7. Lebeau, Alexis & Petitet, Marie & Quemin, Simon & Saguan, Marcelo, 2024. "Long-term issues with the Energy-Only Market design in the context of deep decarbonization," Energy Economics, Elsevier, vol. 132(C).
    8. Heinisch, Verena & Dujardin, Jérôme & Gabrielli, Paolo & Jain, Pranjal & Lehning, Michael & Sansavini, Giovanni & Sasse, Jan-Philipp & Schaffner, Christian & Schwarz, Marius & Trutnevyte, Evelina, 2023. "Inter-comparison of spatial models for high shares of renewable electricity in Switzerland," Applied Energy, Elsevier, vol. 350(C).
    9. Haugen, Mari & Blaisdell-Pijuan, Paris L. & Botterud, Audun & Levin, Todd & Zhou, Zhi & Belsnes, Michael & Korpås, Magnus & Somani, Abhishek, 2024. "Power market models for the clean energy transition: State of the art and future research needs," Applied Energy, Elsevier, vol. 357(C).
    10. Thomaßen, Georg & Redl, Christian & Bruckner, Thomas, 2022. "Will the energy-only market collapse? On market dynamics in low-carbon electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    11. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Murmann, Alexander & Launer, Jann & Gaumnitz, Felix & van Ouwerkerk, Jonas & Mikurda, Jennifer & Torralba-Díaz, Laura, 2022. "Model-related outcome differences in power system models with sector coupling—Quantification and drivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    12. Hirth, Lion & Khanna, Tarun & Ruhnau, Oliver, 2022. "The (very) short-term price elasticity of German electricity demand," EconStor Preprints 249570, ZBW - Leibniz Information Centre for Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bucksteeg, Michael & Wiedmann, Michael & Pöstges, Arne & Haller, Markus & Böttger, Diana & Ruhnau, Oliver & Schmitz, Richard, 2022. "The transformation of integrated electricity and heat systems—Assessing mid-term policies using a model comparison approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Pöstges, Arne & Bucksteeg, Michael & Ruhnau, Oliver & Böttger, Diana & Haller, Markus & Künle, Eglantine & Ritter, David & Schmitz, Richard & Wiedmann, Michael, 2022. "Phasing out coal: An impact analysis comparing five large-scale electricity market models," Applied Energy, Elsevier, vol. 319(C).
    3. Osorio, Sebastian & Tietjen, Oliver & Pahle, Michael & Pietzcker, Robert C. & Edenhofer, Ottmar, 2021. "Reviewing the Market Stability Reserve in light of more ambitious EU ETS emission targets," Energy Policy, Elsevier, vol. 158(C).
    4. Ruhnau, Oliver, 2022. "How flexible electricity demand stabilizes wind and solar market values: The case of hydrogen electrolyzers," Applied Energy, Elsevier, vol. 307(C).
    5. Martin Kittel & Wolf-Peter Schill, 2021. "Renewable Energy Targets and Unintended Storage Cycling: Implications for Energy Modeling," Papers 2107.13380, arXiv.org, revised Sep 2021.
    6. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    7. Quemin, Simon & Trotignon, Raphaël, 2021. "Emissions trading with rolling horizons," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    8. Bocklet, Johanna, 2020. "The Reformed EU ETS in Times of Economic Crises: the Case of the COVID-19 Pandemic," EWI Working Papers 2020-10, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    9. Wildgrube, Theresa, 2022. "Fit for 55? An assessment of the effectiveness of the EU COM's reform proposal for the EU ETS," EWI Working Papers 2022-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    10. Dai, Xingyu & Xiao, Ling & Wang, Qunwei & Dhesi, Gurjeet, 2021. "Multiscale interplay of higher-order moments between the carbon and energy markets during Phase III of the EU ETS," Energy Policy, Elsevier, vol. 156(C).
    11. Quemin, Simon, 2022. "Raising climate ambition in emissions trading systems: The case of the EU ETS and the 2021 review," Resource and Energy Economics, Elsevier, vol. 68(C).
    12. Brown, T. & Reichenberg, L., 2021. "Decreasing market value of variable renewables can be avoided by policy action," Energy Economics, Elsevier, vol. 100(C).
    13. Ruhnau, Oliver, 2020. "Market-based renewables: How flexible hydrogen electrolyzers stabilize wind and solar market values," EconStor Preprints 227075, ZBW - Leibniz Information Centre for Economics.
    14. Chun, Dohyun & Cho, Hoon & Kim, Jihun, 2022. "The relationship between carbon-intensive fuel and renewable energy stock prices under the emissions trading system," Energy Economics, Elsevier, vol. 114(C).
    15. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    16. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    17. Hintermayer, Martin, 2020. "A Carbon Price Floor in the Reformed EU ETS: Design Matters!," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224576, Verein für Socialpolitik / German Economic Association.
    18. Schmidt, Lukas, 2020. "Puncturing the Waterbed or the New Green Paradox? The Effectiveness of Overlapping Policies in the EU ETS under Perfect Foresight and Myopia," EWI Working Papers 2020-7, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    19. Bruninx, Kenneth & Ovaere, Marten & Delarue, Erik, 2020. "The long-term impact of the market stability reserve on the EU emission trading system," Energy Economics, Elsevier, vol. 89(C).
    20. Hintermayer, Martin, 2020. "A Carbon Price Floor in the Reformed EU ETS: Design matters!," EWI Working Papers 2020-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).

    More about this item

    Keywords

    Carbon pricing; EU Emission Trading System (EU ETS); Electricity decarbonization; Power sector; Renewable energy; Fuel switch; Combined heat and power; Electricity market modeling; Model comparison; Model-related uncertainty;
    All these keywords.

    JEL classification:

    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:esprep:234468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.