IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p590-d1024769.html
   My bibliography  Save this article

Interpretation and Quantification of the Flexibility Sources Location on the Flexibility Service in the Distribution Grid

Author

Listed:
  • Ajla Mehinovic

    (PE Elektroprivreda B&H, 71000 Sarajevo, Bosnia and Herzegovina
    Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia)

  • Matej Zajc

    (Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia)

  • Nermin Suljanovic

    (Electric Power System Control and Operation Department, Elektroinštitut Milan Vidmar, 1000 Ljubljana, Slovenia
    Faculty of Electrical Engineering, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina)

Abstract

The economic and technical requirements of current changes in the distribution system are reflected in the use of all available resources and the activation of mechanisms for local use of flexibility. Local flexibility markets are evolving and face numerous obstacles for which appropriate solutions must be found. The local flexibility market will be complemented by the development of a local flexibility register, which will contain all relevant information about the flexibility assets necessary for the efficient operation of the local flexibility market. In this paper, interpretation and quantification of the flexibility sources location on the flexibility service in the distribution grid is given. The information is derived from power flow simulation results and finally written down in the form of line coefficients, which are determined by applying the least squares method to the power flow results. We have developed a Python-based simulator to perform the methodology to determine the information and test it on a realistic medium voltage distribution grid in Bosnia and Herzegovina. This paper confirms the approximate linearity of the active power changes on the demand side to the line load and to the voltage at the nodes for a given operating condition of the distribution grid.

Suggested Citation

  • Ajla Mehinovic & Matej Zajc & Nermin Suljanovic, 2023. "Interpretation and Quantification of the Flexibility Sources Location on the Flexibility Service in the Distribution Grid," Energies, MDPI, vol. 16(2), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:590-:d:1024769
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/590/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/590/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dudjak, Viktorija & Neves, Diana & Alskaif, Tarek & Khadem, Shafi & Pena-Bello, Alejandro & Saggese, Pietro & Bowler, Benjamin & Andoni, Merlinda & Bertolini, Marina & Zhou, Yue & Lormeteau, Blanche &, 2021. "Impact of local energy markets integration in power systems layer: A comprehensive review," Applied Energy, Elsevier, vol. 301(C).
    2. Olivella-Rosell, Pol & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Sumper, Andreas & Ottesen, Stig Ødegaard & Vidal-Clos, Josep-Andreu & Villafáfila-Robles, Roberto, 2018. "Optimization problem for meeting distribution system operator requests in local flexibility markets with distributed energy resources," Applied Energy, Elsevier, vol. 210(C), pages 881-895.
    3. Orlando Valarezo & Tomás Gómez & José Pablo Chaves-Avila & Leandro Lind & Mauricio Correa & David Ulrich Ziegler & Rodrigo Escobar, 2021. "Analysis of New Flexibility Market Models in Europe," Energies, MDPI, vol. 14(12), pages 1-24, June.
    4. Daiva Stanelyte & Neringa Radziukyniene & Virginijus Radziukynas, 2022. "Overview of Demand-Response Services: A Review," Energies, MDPI, vol. 15(5), pages 1-31, February.
    5. Amin, Amin & Kem, Oudom & Gallegos, Pablo & Chervet, Philipp & Ksontini, Feirouz & Mourshed, Monjur, 2022. "Demand response in buildings: Unlocking energy flexibility through district-level electro-thermal simulation," Applied Energy, Elsevier, vol. 305(C).
    6. Fco. Javier Zarco-Soto & Pedro J. Zarco-Periñán & Jose L. Martínez-Ramos, 2021. "Centralized Control of Distribution Networks with High Penetration of Renewable Energies," Energies, MDPI, vol. 14(14), pages 1-13, July.
    7. Stawska, Anna & Romero, Natalia & de Weerdt, Mathijs & Verzijlbergh, Remco, 2021. "Demand response: For congestion management or for grid balancing?," Energy Policy, Elsevier, vol. 148(PA).
    8. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    9. Cherrelle Eid & Paul Codani & Yannick Perez & Javier Reneses & Rudi Hakvoort, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Post-Print hal-01792419, HAL.
    10. Heilmann, Erik & Klempp, Nikolai & Wetzel, Heike, 2020. "Design of regional flexibility markets for electricity: A product classification framework for and application to German pilot projects," Utilities Policy, Elsevier, vol. 67(C).
    11. Zakariazadeh, Alireza & Homaee, Omid & Jadid, Shahram & Siano, Pierluigi, 2014. "A new approach for real time voltage control using demand response in an automated distribution system," Applied Energy, Elsevier, vol. 117(C), pages 157-166.
    12. Andreas Zeiselmair & Simon Köppl, 2021. "Constrained Optimization as the Allocation Method in Local Flexibility Markets," Energies, MDPI, vol. 14(13), pages 1-21, June.
    13. Anthony Papavasiliou, 2018. "Analysis of distribution locational marginal prices," LIDAM Reprints CORE 3045, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Erik Heilmann & Andreas Zeiselmair & Thomas Estermann, 2021. "Matching supply and demand of electricity network-supportive flexibility: A case study with three comprehensible matching algorithms," MAGKS Papers on Economics 202110, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    15. Theo Dronne & Fabien Roques & Marcelo Saguan, 2021. "Local Flexibility Markets for Distribution Network Congestion-Management in Center-Western Europe: Which Design for Which Needs?," Energies, MDPI, vol. 14(14), pages 1-18, July.
    16. Mohammad Esmaeil Honarmand & Vahid Hosseinnezhad & Barry Hayes & Pierluigi Siano, 2021. "Local Energy Trading in Future Distribution Systems," Energies, MDPI, vol. 14(11), pages 1-19, May.
    17. Jin, Xiaolong & Wu, Qiuwei & Jia, Hongjie, 2020. "Local flexibility markets: Literature review on concepts, models and clearing methods," Applied Energy, Elsevier, vol. 261(C).
    18. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rebenaque, Olivier & Schmitt, Carlo & Schumann, Klemens & Dronne, Théo & Roques, Fabien, 2023. "Success of local flexibility market implementation: A review of current projects," Utilities Policy, Elsevier, vol. 80(C).
    2. Potenciano Menci, Sergio & Valarezo, Orlando, 2024. "Decoding design characteristics of local flexibility markets for congestion management with a multi-layered taxonomy," Applied Energy, Elsevier, vol. 357(C).
    3. Kara, Güray & Tomasgard, Asgeir & Farahmand, Hossein, 2022. "Characterizing flexibility in power markets and systems," Utilities Policy, Elsevier, vol. 75(C).
    4. Karim L. Anaya & Michael G. Pollitt, 2021. "How to Procure Flexibility Services within the Electricity Distribution System: Lessons from an International Review of Innovation Projects," Energies, MDPI, vol. 14(15), pages 1-26, July.
    5. Tsaousoglou, Georgios & Giraldo, Juan S. & Paterakis, Nikolaos G., 2022. "Market Mechanisms for Local Electricity Markets: A review of models, solution concepts and algorithmic techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Gržanić, M. & Capuder, T. & Zhang, N. & Huang, W., 2022. "Prosumers as active market participants: A systematic review of evolution of opportunities, models and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Erik Heilmann & Nikolai Klempp & Kai Hufendiek & Heike Wetzel, 2022. "Long-term Contracts for Network-supportive Flexibility in Local Flexibility Markets," MAGKS Papers on Economics 202224, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    8. Pol Olivella-Rosell & Pau Lloret-Gallego & Íngrid Munné-Collado & Roberto Villafafila-Robles & Andreas Sumper & Stig Ødegaard Ottessen & Jayaprakash Rajasekharan & Bernt A. Bremdal, 2018. "Local Flexibility Market Design for Aggregators Providing Multiple Flexibility Services at Distribution Network Level," Energies, MDPI, vol. 11(4), pages 1-19, April.
    9. Bellenbaum, Julia & Höckner, Jonas & Weber, Christoph, 2022. "Designing flexibility procurement markets for congestion management – investigating two-stage procurement auctions," Energy Economics, Elsevier, vol. 106(C).
    10. Heilmann, Erik, 2023. "The impact of transparency policies on local flexibility markets in electric distribution networks," Utilities Policy, Elsevier, vol. 83(C).
    11. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    12. Ottesen, Stig Ødegaard & Tomasgard, Asgeir & Fleten, Stein-Erik, 2018. "Multi market bidding strategies for demand side flexibility aggregators in electricity markets," Energy, Elsevier, vol. 149(C), pages 120-134.
    13. Erik Heilmann, 2021. "The impact of transparency policies on local flexibility markets in electrical distribution networks: A case study with artificial neural network forecasts," MAGKS Papers on Economics 202141, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    14. Wadim Strielkowski & Andrey Vlasov & Kirill Selivanov & Konstantin Muraviev & Vadim Shakhnov, 2023. "Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review," Energies, MDPI, vol. 16(10), pages 1-31, May.
    15. Guray Kara & Asgeir Tomasgard & Hossein Farahmand, 2021. "Characterization of flexible electricity in power and energy markets," Papers 2109.03000, arXiv.org.
    16. Carlo Schmitt & Felix Gaumnitz & Andreas Blank & Olivier Rebenaque & Théo Dronne & Arnault Martin & Philippe Vassilopoulos & Albert Moser & Fabien Roques, 2021. "Framework for Deterministic Assessment of Risk-Averse Participation in Local Flexibility Markets †," Energies, MDPI, vol. 14(11), pages 1-34, May.
    17. Cramer, Wilhelm & Schumann, Klemens & Andres, Michael & Vertgewall, Chris & Monti, Antonello & Schreck, Sebastian & Metzger, Michael & Jessenberger, Stefan & Klaus, Joachim & Brunner, Christoph & Heri, 2021. "A simulative framework for a multi-regional assessment of local energy markets – A case of large-scale electric vehicle deployment in Germany," Applied Energy, Elsevier, vol. 299(C).
    18. Jin, Xiaolong & Wu, Qiuwei & Jia, Hongjie, 2020. "Local flexibility markets: Literature review on concepts, models and clearing methods," Applied Energy, Elsevier, vol. 261(C).
    19. Hennig, Roman J. & de Vries, Laurens J. & Tindemans, Simon H., 2023. "Congestion management in electricity distribution networks: Smart tariffs, local markets and direct control," Utilities Policy, Elsevier, vol. 85(C).
    20. Aikaterini Forouli & Emmanouil A. Bakirtzis & Georgios Papazoglou & Konstantinos Oureilidis & Vasileios Gkountis & Luisa Candido & Eloi Delgado Ferrer & Pandelis Biskas, 2021. "Assessment of Demand Side Flexibility in European Electricity Markets: A Country Level Review," Energies, MDPI, vol. 14(8), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:590-:d:1024769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.