IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1100-d106071.html
   My bibliography  Save this article

Potential Arbitrage Revenue of Energy Storage Systems in PJM

Author

Listed:
  • Mauricio B. C. Salles

    (Laboratory of Advanced Electric Grids - LGrid, Polytechnic School, University of São Paulo, São Paulo 05508-010, Brazil)

  • Junling Huang

    (John F. Kennedy School of Government, Harvard University, Cambridge, MA 02138, USA)

  • Michael J. Aziz

    (John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA)

  • William W. Hogan

    (John F. Kennedy School of Government, Harvard University, Cambridge, MA 02138, USA)

Abstract

The volatility of electricity prices is attracting interest in the opportunity of providing net revenue by energy arbitrage. We analyzed the potential revenue of a generic Energy Storage System (ESS) in 7395 different locations within the electricity markets of Pennsylvania-New Jersey-Maryland interconnection (PJM), the largest U.S. regional transmission organization, using hourly locational marginal prices over the seven-year period 2008–2014. Assuming a price-taking ESS with perfect foresight in the real-time market, we optimized the charge-discharge profile to determine the maximum potential revenue for a 1 MW system as a function of energy/power ratio, or rated discharge duration, from 1 to 14 h, including a limited analysis of sensitivity to round-trip efficiency. We determined minimum potential revenue with a similar analysis of the day-ahead market. We presented the distribution over the set of nodes and years of price, price volatility, and maximum potential arbitrage revenue. From these results, we determined the breakeven overnight installed cost of an ESS below which arbitrage would be profitable, its dependence on rated discharge duration, its distribution over grid nodes, and its variation over the years. We showed that dispatch into real-time markets based on day-ahead market settlement prices is a simple, feasible method that raises the lower bound on the achievable arbitrage revenue.

Suggested Citation

  • Mauricio B. C. Salles & Junling Huang & Michael J. Aziz & William W. Hogan, 2017. "Potential Arbitrage Revenue of Energy Storage Systems in PJM," Energies, MDPI, vol. 10(8), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1100-:d:106071
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1100/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1100/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Drury, Easan & Denholm, Paul & Sioshansi, Ramteen, 2011. "The value of compressed air energy storage in energy and reserve markets," Energy, Elsevier, vol. 36(8), pages 4959-4973.
    2. Zareipour, Hamidreza & Bhattacharya, Kankar & Canizares, Claudio A., 2007. "Electricity market price volatility: The case of Ontario," Energy Policy, Elsevier, vol. 35(9), pages 4739-4748, September.
    3. Hittinger, Eric & Lueken, Roger, 2015. "Is inexpensive natural gas hindering the grid energy storage industry?," Energy Policy, Elsevier, vol. 87(C), pages 140-152.
    4. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    5. Connolly, D. & Lund, H. & Finn, P. & Mathiesen, B.V. & Leahy, M., 2011. "Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitrage," Energy Policy, Elsevier, vol. 39(7), pages 4189-4196, July.
    6. Bradbury, Kyle & Pratson, Lincoln & Patiño-Echeverri, Dalia, 2014. "Economic viability of energy storage systems based on price arbitrage potential in real-time U.S. electricity markets," Applied Energy, Elsevier, vol. 114(C), pages 512-519.
    7. Walawalkar, Rahul & Apt, Jay & Mancini, Rick, 2007. "Economics of electric energy storage for energy arbitrage and regulation in New York," Energy Policy, Elsevier, vol. 35(4), pages 2558-2568, April.
    8. McConnell, Dylan & Forcey, Tim & Sandiford, Mike, 2015. "Estimating the value of electricity storage in an energy-only wholesale market," Applied Energy, Elsevier, vol. 159(C), pages 422-432.
    9. Sioshansi, Ramteen & Denholm, Paul & Jenkin, Thomas & Weiss, Jurgen, 2009. "Estimating the value of electricity storage in PJM: Arbitrage and some welfare effects," Energy Economics, Elsevier, vol. 31(2), pages 269-277, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ikechi Emmanuel, Michael & Denholm, Paul, 2022. "A market feedback framework for improved estimates of the arbitrage value of energy storage using price-taker models," Applied Energy, Elsevier, vol. 310(C).
    2. Dawid Chudy & Adam Leśniak, 2021. "Advantages of Applying Large-Scale Energy Storage for Load-Generation Balancing," Energies, MDPI, vol. 14(11), pages 1-17, May.
    3. Ryusuke Konishi & Akiko Takeda & Masaki Takahashi, 2018. "Optimal Sizing of Energy Storage Systems for the Energy Procurement Problem in Multi-Period Markets under Uncertainties," Energies, MDPI, vol. 11(1), pages 1-19, January.
    4. Denholm, Paul & Nunemaker, Jacob & Gagnon, Pieter & Cole, Wesley, 2020. "The potential for battery energy storage to provide peaking capacity in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1269-1277.
    5. Brown, Patrick R. & O'Sullivan, Francis M., 2020. "Spatial and temporal variation in the value of solar power across United States electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    6. Marte Fodstad & Mats Mathisen Aarlott & Kjetil Trovik Midthun, 2017. "Value-Creation Potential from Multi-Market Trading for a Hydropower Producer," Energies, MDPI, vol. 11(1), pages 1-15, December.
    7. Andreolli, Francesca & D’Alpaos, Chiara & Moretto, Michele, 2022. "Valuing investments in domestic PV-Battery Systems under uncertainty," Energy Economics, Elsevier, vol. 106(C).
    8. Simpson, J.G. & Hanrahan, G. & Loth, E. & Koenig, G.M. & Sadoway, D.R., 2021. "Liquid metal battery storage in an offshore wind turbine: Concept and economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Bennett, Jeffrey A. & Simpson, Juliet G. & Qin, Chao & Fittro, Roger & Koenig, Gary M. & Clarens, Andres F. & Loth, Eric, 2021. "Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power," Applied Energy, Elsevier, vol. 303(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goteti, Naga Srujana & Hittinger, Eric & Sergi, Brian & Lima Azevedo, Inês, 2021. "How does new energy storage affect the operation and revenue of existing generation?," Applied Energy, Elsevier, vol. 285(C).
    2. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    3. McConnell, Dylan & Forcey, Tim & Sandiford, Mike, 2015. "Estimating the value of electricity storage in an energy-only wholesale market," Applied Energy, Elsevier, vol. 159(C), pages 422-432.
    4. Khan, Agha Salman M. & Verzijlbergh, Remco A. & Sakinci, Ozgur Can & De Vries, Laurens J., 2018. "How do demand response and electrical energy storage affect (the need for) a capacity market?," Applied Energy, Elsevier, vol. 214(C), pages 39-62.
    5. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    6. Mercier, Thomas & Olivier, Mathieu & De Jaeger, Emmanuel, 2023. "The value of electricity storage arbitrage on day-ahead markets across Europe," Energy Economics, Elsevier, vol. 123(C).
    7. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, Georgios, 2016. "The value of arbitrage for energy storage: Evidence from European electricity markets," Applied Energy, Elsevier, vol. 184(C), pages 971-986.
    8. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    9. Chen, Yang & Odukomaiya, Adewale & Kassaee, Saiid & O’Connor, Patrick & Momen, Ayyoub M. & Liu, Xiaobing & Smith, Brennan T., 2019. "Preliminary analysis of market potential for a hydropneumatic ground-level integrated diverse energy storage system," Applied Energy, Elsevier, vol. 242(C), pages 1237-1247.
    10. de Sisternes, Fernando J. & Jenkins, Jesse D. & Botterud, Audun, 2016. "The value of energy storage in decarbonizing the electricity sector," Applied Energy, Elsevier, vol. 175(C), pages 368-379.
    11. Arcos-Vargas, Ángel & Canca, David & Núñez, Fernando, 2020. "Impact of battery technological progress on electricity arbitrage: An application to the Iberian market," Applied Energy, Elsevier, vol. 260(C).
    12. Núñez, Fernando & Canca, David & Arcos-Vargas, Ángel, 2022. "An assessment of European electricity arbitrage using storage systems," Energy, Elsevier, vol. 242(C).
    13. Ruppert, Leopold & Schürhuber, Robert & List, Bernhard & Lechner, Alois & Bauer, Christian, 2017. "An analysis of different pumped storage schemes from a technological and economic perspective," Energy, Elsevier, vol. 141(C), pages 368-379.
    14. Ikechi Emmanuel, Michael & Denholm, Paul, 2022. "A market feedback framework for improved estimates of the arbitrage value of energy storage using price-taker models," Applied Energy, Elsevier, vol. 310(C).
    15. Berrada, Asmae & Loudiyi, Khalid & Zorkani, Izeddine, 2016. "Valuation of energy storage in energy and regulation markets," Energy, Elsevier, vol. 115(P1), pages 1109-1118.
    16. Hittinger, Eric & Lueken, Roger, 2015. "Is inexpensive natural gas hindering the grid energy storage industry?," Energy Policy, Elsevier, vol. 87(C), pages 140-152.
    17. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    18. Lin, Boqiang & Wu, Wei, 2017. "Economic viability of battery energy storage and grid strategy: A special case of China electricity market," Energy, Elsevier, vol. 124(C), pages 423-434.
    19. Berrada, Asmae & Loudiyi, Khalid, 2016. "Operation, sizing, and economic evaluation of storage for solar and wind power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1117-1129.
    20. Jeon, Wooyoung & Mo, Jung Youn, 2018. "The true economic value of supply-side energy storage in the smart grid environment – The case of Korea," Energy Policy, Elsevier, vol. 121(C), pages 101-111.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1100-:d:106071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.