IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v234y2021ics0360544221015243.html
   My bibliography  Save this article

Influence of control strategy on seasonal coefficient of performance for a heat pump with low-temperature heat storage in the geographical conditions of Central Europe

Author

Listed:
  • Kudela, Libor
  • Špiláček, Michal
  • Pospíšil, Jiří

Abstract

This paper presents a computational parametric study on increasing the Seasonal Coefficient of Performance (SCOP) for residential heat pumps. The studied system consists of a heat pump, low-temperature heat storage, and a control unit. The heat pump enables selection of a low-temperature heat source between ambient air and water in a tank. Two variants of low-temperature heat storage are tested, particularly, insulated-water heat storage and water heat storage sunken in soil. The study is further complemented with a test of selected algorithms for heat pump control: equithermal regulation, a binary algorithm for temperature source selection, a predictive algorithm for the heat storage discharging, and an algorithm for deferred heat storage discharging. A computational model of the system is made using Python. The assessment of HP operation is made based on meteorological data from the years 2008–2019 recorded in the city of Brno, Czech Republic, Central Europe. The results obtained show that using the approaches tested has the potential for increasing the SCOP. This increase reaches as much as 5.19% and it requires only a simple software change in the heat pump control algorithm and connection to meteorological data prediction.

Suggested Citation

  • Kudela, Libor & Špiláček, Michal & Pospíšil, Jiří, 2021. "Influence of control strategy on seasonal coefficient of performance for a heat pump with low-temperature heat storage in the geographical conditions of Central Europe," Energy, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221015243
    DOI: 10.1016/j.energy.2021.121276
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221015243
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121276?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shichen Gao & Changfu Tang & Wanjing Luo & Jiaqiang Han & Bailu Teng, 2020. "A New Analytical Model for Calculating Transient Temperature Response of Vertical Ground Heat Exchangers with a Single U-Shaped Tube," Energies, MDPI, vol. 13(8), pages 1-12, April.
    2. Kuboth, Sebastian & Heberle, Florian & König-Haagen, Andreas & Brüggemann, Dieter, 2019. "Economic model predictive control of combined thermal and electric residential building energy systems," Applied Energy, Elsevier, vol. 240(C), pages 372-385.
    3. Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.
    4. Pospíšil, Jiří & Špiláček, Michal & Kudela, Libor, 2018. "Potential of predictive control for improvement of seasonal coefficient of performance of air source heat pump in Central European climate zone," Energy, Elsevier, vol. 154(C), pages 415-423.
    5. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2020. "Multi-objective optimisation of a seasonal solar thermal energy storage system for space heating in cold climate," Applied Energy, Elsevier, vol. 268(C).
    6. Hepbasli, Arif & Kalinci, Yildiz, 2009. "A review of heat pump water heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1211-1229, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaime Sieres & Ignacio Ortega & Fernando Cerdeira & Estrella Álvarez & José M. Santos, 2022. "Seasonal Efficiency of a Brine-to-Water Heat Pump with Different Control Options according to Ecodesign Standards," Clean Technol., MDPI, vol. 4(2), pages 1-13, June.
    2. Li, Yufan & Bi, Yuehong & Lin, Yashan & Wang, Hongyan & Sun, Ruirui, 2023. "Analysis of the soil heat balance of a solar-ground source absorption heat pump with the soil-based energy storage in the transition season," Energy, Elsevier, vol. 264(C).
    3. Varbanov, Petar Sabev & Wang, Bohong & Ocłoń, Paweł & Radziszewska-Zielina, Elżbieta & Ma, Ting & Klemeš, Jiří Jaromír & Jia, Xuexiu, 2023. "Efficiency measures for energy supply and use aiming for a clean circular economy," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiří Pospíšil & Michal Špiláček & Pavel Charvát, 2019. "Seasonal COP of an Air-to-Water Heat Pump when Using Predictive Control Preferring Power Production from Renewable Sources in the Czech Republic," Energies, MDPI, vol. 12(17), pages 1-13, August.
    2. Aste, Niccolò & Adhikari, R.S. & Manfren, Massimiliano, 2013. "Cost optimal analysis of heat pump technology adoption in residential reference buildings," Renewable Energy, Elsevier, vol. 60(C), pages 615-624.
    3. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    4. Natanael Bolson & Maxim Yutkin & Tadeusz Patzek, 2023. "Primary Power Analysis of a Global Electrification Scenario," Sustainability, MDPI, vol. 15(19), pages 1-20, October.
    5. Wanjiru, Evan M. & Sichilalu, Sam M. & Xia, Xiaohua, 2017. "Optimal control of heat pump water heater-instantaneous shower using integrated renewable-grid energy systems," Applied Energy, Elsevier, vol. 201(C), pages 332-342.
    6. Poppi, Stefano & Sommerfeldt, Nelson & Bales, Chris & Madani, Hatef & Lundqvist, Per, 2018. "Techno-economic review of solar heat pump systems for residential heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 22-32.
    7. Nizetic, S. & Coko, D. & Marasovic, I., 2014. "Experimental study on a hybrid energy system with small- and medium-scale applications for mild climates," Energy, Elsevier, vol. 75(C), pages 379-389.
    8. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    9. Hou, Gaoyang & Taherian, Hessam & Song, Ying & Jiang, Wei & Chen, Diyi, 2022. "A systematic review on optimal analysis of horizontal heat exchangers in ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Carroll, P. & Chesser, M. & Lyons, P., 2020. "Air Source Heat Pumps field studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Chae, Kyu-Jung & Ren, Xianghao, 2016. "Flexible and stable heat energy recovery from municipal wastewater treatment plants using a fixed-inverter hybrid heat pump system," Applied Energy, Elsevier, vol. 179(C), pages 565-574.
    12. Yoon, Seok & Lee, Seung-Rae & Kim, Min-Jun & Kim, Woo-Jin & Kim, Geon-Young & Kim, Kyungsu, 2016. "Evaluation of stainless steel pipe performance as a ground heat exchanger in ground-source heat-pump system," Energy, Elsevier, vol. 113(C), pages 328-337.
    13. Roberto Bruno & Francesco Nicoletti & Giorgio Cuconati & Stefania Perrella & Daniela Cirone, 2020. "Performance Indexes of an Air-Water Heat Pump Versus the Capacity Ratio: Analysis by Means of Experimental Data," Energies, MDPI, vol. 13(13), pages 1-19, July.
    14. Li, Qiyuan & Shirazi, Ali & Zheng, Cheng & Rosengarten, Gary & Scott, Jason A. & Taylor, Robert A., 2016. "Energy concentration limits in solar thermal heating applications," Energy, Elsevier, vol. 96(C), pages 253-267.
    15. Antonijevic, Dragi & Komatina, Mirko, 2011. "Sustainable sub-geothermal heat pump heating in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3534-3538.
    16. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2017. "Operation characteristics of a novel dual source multi-functional heat pump system under various working modes," Applied Energy, Elsevier, vol. 194(C), pages 236-246.
    17. Guo, J.J. & Wu, J.Y. & Wang, R.Z. & Li, S., 2011. "Experimental research and operation optimization of an air-source heat pump water heater," Applied Energy, Elsevier, vol. 88(11), pages 4128-4138.
    18. Elías-Maxil, J.A. & van der Hoek, Jan Peter & Hofman, Jan & Rietveld, Luuk, 2014. "Energy in the urban water cycle: Actions to reduce the total expenditure of fossil fuels with emphasis on heat reclamation from urban water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 808-820.
    19. Wang, Fenghao & Wang, Zhihua & Zheng, Yuxin & Lin, Zhang & Hao, Pengfei & Huan, Chao & Wang, Tian, 2015. "Performance investigation of a novel frost-free air-source heat pump water heater combined with energy storage and dehumidification," Applied Energy, Elsevier, vol. 139(C), pages 212-219.
    20. Hélio A. G. Diniz & Tiago F. Paulino & Juan J. G. Pabon & Antônio A. T. Maia & Raphael N. Oliveira, 2021. "Dynamic Model of a Transcritical CO 2 Heat Pump for Residential Water Heating," Sustainability, MDPI, vol. 13(6), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221015243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.