IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v152y2021ics0301421521000896.html
   My bibliography  Save this article

Optimal building retrofit pathways considering stock dynamics and climate change impacts

Author

Listed:
  • Streicher, Kai Nino
  • Berger, Matthias
  • Panos, Evangelos
  • Narula, Kapil
  • Soini, Martin Christoph
  • Patel, Martin K.

Abstract

Deep energy retrofit across the European building stock would require decades during which boundary conditions will change. This study identifies a range of retrofit pathways, using a dynamic stock model, a bottom-up energy model and an optimization model for different climate scenarios. We consider 1.1 million different retrofit options in the Swiss residential building stock for different economic/environmental objectives until 2060. Despite the replacement of old by new buildings, energy demand and greenhouse gas (GHG) emissions in the reference scenario without deep energy retrofitting are likely to decrease by only about 25%, while accounting for investments of 2–3 billion CHF/a. Partial energy retrofitting or an investment-minimized pathway are neither cost-effective nor sufficient to get close to the net zero targets. In contrast, the highest GHG-saving pathway leads to very high emission reduction of 90%, but requires investment cost of 9 billion CHF/a, which leads to specific cost of 180 CHF/t CO2eq. The cost-optimal pathway shows moderate trade-offs for investment cost and could reach GHG savings of 77% with specific cost of −140 CHF/t CO2eq. Hence, early and deep energy retrofit is cost-effective and allows deep GHG emission reductions by making full use of the synergies between GHG and cost savings.

Suggested Citation

  • Streicher, Kai Nino & Berger, Matthias & Panos, Evangelos & Narula, Kapil & Soini, Martin Christoph & Patel, Martin K., 2021. "Optimal building retrofit pathways considering stock dynamics and climate change impacts," Energy Policy, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:enepol:v:152:y:2021:i:c:s0301421521000896
    DOI: 10.1016/j.enpol.2021.112220
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521000896
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112220?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lang, Ghislaine & Lanz, Bruno, 2021. "Energy efficiency, information, and the acceptability of rent increases: A survey experiment with tenants," Energy Economics, Elsevier, vol. 95(C).
    2. Chambers, Jonathan & Narula, Kapil & Sulzer, Matthias & Patel, Martin K., 2019. "Mapping district heating potential under evolving thermal demand scenarios and technologies: A case study for Switzerland," Energy, Elsevier, vol. 176(C), pages 682-692.
    3. Siller, Thomas & Kost, Michael & Imboden, Dieter, 2007. "Long-term energy savings and greenhouse gas emission reductions in the Swiss residential sector," Energy Policy, Elsevier, vol. 35(1), pages 529-539, January.
    4. Jakob, Martin, 2006. "Marginal costs and co-benefits of energy efficiency investments: The case of the Swiss residential sector," Energy Policy, Elsevier, vol. 34(2), pages 172-187, January.
    5. Dineen, D. & Ó Gallachóir, B.P., 2017. "Exploring the range of energy savings likely from energy efficiency retrofit measures in Ireland's residential sector," Energy, Elsevier, vol. 121(C), pages 126-134.
    6. Abolfazl Farahani & Holger Wallbaum & Jan-Olof Dalenbäck, 2019. "Optimized maintenance and renovation scheduling in multifamily buildings – a systematic approach based on condition state and life cycle cost of building components," Construction Management and Economics, Taylor & Francis Journals, vol. 37(3), pages 139-155, March.
    7. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    8. Laura Gabrielli & Aurora Ruggeri, 2019. "Developing a model for energy retrofit in large building portfolios: energy assessment, optimization and uncertainty," ERES eres2019_203, European Real Estate Society (ERES).
    9. Sartori, Igor & Wachenfeldt, Bjrn Jensen & Hestnes, Anne Grete, 2009. "Energy demand in the Norwegian building stock: Scenarios on potential reduction," Energy Policy, Elsevier, vol. 37(5), pages 1614-1627, May.
    10. Schimschar, Sven & Blok, Kornelis & Boermans, Thomas & Hermelink, Andreas, 2011. "Germany's path towards nearly zero-energy buildings--Enabling the greenhouse gas mitigation potential in the building stock," Energy Policy, Elsevier, vol. 39(6), pages 3346-3360, June.
    11. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "The role of an exergy-based building stock model for exploration of future decarbonisation scenarios and policy making," Energy Policy, Elsevier, vol. 105(C), pages 467-483.
    12. Yazdanie, Mashael & Densing, Martin & Wokaun, Alexander, 2017. "Cost optimal urban energy systems planning in the context of national energy policies: A case study for the city of Basel," Energy Policy, Elsevier, vol. 110(C), pages 176-190.
    13. Shen, Pengyuan & Braham, William & Yi, Yunkyu, 2019. "The feasibility and importance of considering climate change impacts in building retrofit analysis," Applied Energy, Elsevier, vol. 233, pages 254-270.
    14. Amstalden, Roger W. & Kost, Michael & Nathani, Carsten & Imboden, Dieter M., 2007. "Economic potential of energy-efficient retrofitting in the Swiss residential building sector: The effects of policy instruments and energy price expectations," Energy Policy, Elsevier, vol. 35(3), pages 1819-1829, March.
    15. Narula, Kapil & Chambers, Jonathan & Streicher, Kai N. & Patel, Martin K., 2019. "Strategies for decarbonising the Swiss heating system," Energy, Elsevier, vol. 169(C), pages 1119-1131.
    16. Mata, Érika & Kalagasidis, Angela Sasic & Johnsson, Filip, 2018. "Contributions of building retrofitting in five member states to EU targets for energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 759-774.
    17. Nägeli, Claudio & Jakob, Martin & Catenazzi, Giacomo & Ostermeyer, York, 2020. "Policies to decarbonize the Swiss residential building stock: An agent-based building stock modeling assessment," Energy Policy, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fahlstedt, Oskar & Temeljotov-Salaj, Alenka & Lohne, Jardar & Bohne, Rolf André, 2022. "Holistic assessment of carbon abatement strategies in building refurbishment literature — A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Li, Xiang & Yilmaz, Selin & Patel, Martin K. & Chambers, Jonathan, 2023. "Techno-economic analysis of fifth-generation district heating and cooling combined with seasonal borehole thermal energy storage," Energy, Elsevier, vol. 285(C).
    3. Cremer, Leo & Weber, Christine, 2022. "Deep energy retrofits: How effective and robust are policy instruments?," Energy Policy, Elsevier, vol. 170(C).
    4. Chambers, Jonathan & Zuberi, M.J.S. & Streicher, K.N. & Patel, Martin K., 2021. "Geospatial global sensitivity analysis of a heat energy service decarbonisation model of the building stock," Applied Energy, Elsevier, vol. 302(C).
    5. Rinaldi, Arthur & Yilmaz, Selin & Patel, Martin K. & Parra, David, 2022. "What adds more flexibility? An energy system analysis of storage, demand-side response, heating electrification, and distribution reinforcement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Petkov, Ivalin & Mavromatidis, Georgios & Knoeri, Christof & Allan, James & Hoffmann, Volker H., 2022. "MANGOret: An optimization framework for the long-term investment planning of building multi-energy system and envelope retrofits," Applied Energy, Elsevier, vol. 314(C).
    7. De Masi, Rosa Francesca & Gigante, Antonio & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2021. "Impact of weather data and climate change projections in the refurbishment design of residential buildings in cooling dominated climate," Applied Energy, Elsevier, vol. 303(C).
    8. Thrampoulidis, Emmanouil & Hug, Gabriela & Orehounig, Kristina, 2023. "Approximating optimal building retrofit solutions for large-scale retrofit analysis," Applied Energy, Elsevier, vol. 333(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petkov, Ivalin & Mavromatidis, Georgios & Knoeri, Christof & Allan, James & Hoffmann, Volker H., 2022. "MANGOret: An optimization framework for the long-term investment planning of building multi-energy system and envelope retrofits," Applied Energy, Elsevier, vol. 314(C).
    2. Bischof, Julian & Duffy, Aidan, 2022. "Life-cycle assessment of non-domestic building stocks: A meta-analysis of current modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Zvingilaite, Erika & Klinge Jacobsen, Henrik, 2015. "Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs," Energy Policy, Elsevier, vol. 77(C), pages 31-45.
    5. Clune, Stephen & Morrissey, John & Moore, Trivess, 2012. "Size matters: House size and thermal efficiency as policy strategies to reduce net emissions of new developments," Energy Policy, Elsevier, vol. 48(C), pages 657-667.
    6. zvingilaite, Erika & Klinge Jacobsen, Henrik, 2012. "Heat savings and heat generation technologies: Modelling of residential investment behaviour with local externalities," MPRA Paper 41545, University Library of Munich, Germany.
    7. Giraudet, Louis-Gaëtan & Guivarch, Céline & Quirion, Philippe, 2012. "Exploring the potential for energy conservation in French households through hybrid modeling," Energy Economics, Elsevier, vol. 34(2), pages 426-445.
    8. Mata, Érika & Wanemark, Joel & Nik, Vahid M. & Sasic Kalagasidis, Angela, 2019. "Economic feasibility of building retrofitting mitigation potentials: Climate change uncertainties for Swedish cities," Applied Energy, Elsevier, vol. 242(C), pages 1022-1035.
    9. Charlier, Dorothée & Risch, Anna, 2012. "Evaluation of the impact of environmental public policy measures on energy consumption and greenhouse gas emissions in the French residential sector," Energy Policy, Elsevier, vol. 46(C), pages 170-184.
    10. Yang, Xiu'e & Liu, Shuli & Zou, Yuliang & Ji, Wenjie & Zhang, Qunli & Ahmed, Abdullahi & Han, Xiaojing & Shen, Yongliang & Zhang, Shaoliang, 2022. "Energy-saving potential prediction models for large-scale building: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    11. Yang, Yuchen & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate change and energy performance of European residential building stocks – A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment," Applied Energy, Elsevier, vol. 298(C).
    12. Stéphane Poncin, 2018. "Energy policy tools in Luxembourg - Assessing their impact on households’ space heating energy consumption and CO2 emissions by means of the LuxHEI model," DEM Discussion Paper Series 18-23, Department of Economics at the University of Luxembourg.
    13. Dineen, D. & Ó Gallachóir, B.P., 2017. "Exploring the range of energy savings likely from energy efficiency retrofit measures in Ireland's residential sector," Energy, Elsevier, vol. 121(C), pages 126-134.
    14. Savvidou, Georgia & Nykvist, Björn, 2020. "Heat demand in the Swedish residential building stock - pathways on demand reduction potential based on socio-technical analysis," Energy Policy, Elsevier, vol. 144(C).
    15. Omar Shafqat & Elena Malakhatka & Nina Chrobot & Per Lundqvist, 2021. "End Use Energy Services Framework Co-Creation with Multiple Stakeholders—A Living Lab-Based Case Study," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    16. Häckel, Björn & Pfosser, Stefan & Tränkler, Timm, 2017. "Explaining the energy efficiency gap - Expected Utility Theory versus Cumulative Prospect Theory," Energy Policy, Elsevier, vol. 111(C), pages 414-426.
    17. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    18. Wang, Xiaotong & Lu, Meijun & Mao, Wei & Ouyang, Jinlong & Zhou, Bo & Yang, Yunkai, 2015. "Improving benefit-cost analysis to overcome financing difficulties in promoting energy-efficient renovation of existing residential buildings in China," Applied Energy, Elsevier, vol. 141(C), pages 119-130.
    19. Zvingilaite, Erika, 2013. "Modelling energy savings in the Danish building sector combined with internalisation of health related externalities in a heat and power system optimisation model," Energy Policy, Elsevier, vol. 55(C), pages 57-72.
    20. Shen, Pengyuan & Yang, Biao, 2020. "Projecting Texas energy use for residential sector under future climate and urbanization scenarios: A bottom-up method based on twenty-year regional energy use data," Energy, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:152:y:2021:i:c:s0301421521000896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.