IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v57y2019i20p6385-6404.html
   My bibliography  Save this article

A graph-based model to measure structural redundancy for supply chain resilience

Author

Listed:
  • Wen Jun Tan
  • Allan N. Zhang
  • Wentong Cai

Abstract

Globalisation and lean initiatives increase the vulnerabilities of the supply chains (SC), where disruptions in any plant in a supply chain network (SCN) can propagate throughout the whole SCN. Redundancy is part of the SC re-engineering to improve supply chain resilience (SCRES). This paper presents a conceptual model of an SCN using graph theory, considering the relationships between plants and materials. Based on the model, the structural redundancy of the SCN is measured, which is used to assess SCRES. This assessment approach focuses on the resilience of the SCN against disruptions. Case studies are discussed to illustrate the applicability of this model and show that increasing structural redundancy of the SCN improves SCRES against disruptions.

Suggested Citation

  • Wen Jun Tan & Allan N. Zhang & Wentong Cai, 2019. "A graph-based model to measure structural redundancy for supply chain resilience," International Journal of Production Research, Taylor & Francis Journals, vol. 57(20), pages 6385-6404, October.
  • Handle: RePEc:taf:tprsxx:v:57:y:2019:i:20:p:6385-6404
    DOI: 10.1080/00207543.2019.1566666
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2019.1566666
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2019.1566666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aditya Kamat & Saket Shanker & Akhilesh Barve & Kamalakanta Muduli & Sachin Kumar Mangla & Sunil Luthra, 2022. "Uncovering interrelationships between barriers to unmanned aerial vehicles in humanitarian logistics," Operations Management Research, Springer, vol. 15(3), pages 1134-1160, December.
    2. Pinyarat Sirisomboonsuk & James Burns, 2023. "Sustainability in Supply Chains through Rapid Capacity Increases and Minimized Disruptions," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
    3. Ding, Yueting & Zhang, Ming & Chen, Sai & Nie, Rui, 2020. "Assessing the resilience of China’s natural gas importation under network disruptions," Energy, Elsevier, vol. 211(C).
    4. Basu R, Jothi & Abdulrahman, Muhammad D. & Yuvaraj, M., 2023. "Improving agility and resilience of automotive spares supply chain: The additive manufacturing enabled truck model," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    5. Alikhani, Reza & Ranjbar, Amirhossein & Jamali, Amir & Torabi, S. Ali & Zobel, Christopher W., 2023. "Towards increasing synergistic effects of resilience strategies in supply chain network design," Omega, Elsevier, vol. 116(C).
    6. Ivanov, Dmitry & Dolgui, Alexandre, 2021. "OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications," International Journal of Production Economics, Elsevier, vol. 232(C).
    7. Jiakuan Chen & Haoyu Wen, 2023. "The application of complex network theory for resilience improvement of knowledge-intensive supply chains," Operations Management Research, Springer, vol. 16(3), pages 1140-1161, September.
    8. Dui, Hongyan & Liu, Meng & Song, Jiaying & Wu, Shaomin, 2023. "Importance measure-based resilience management: Review, methodology and perspectives on maintenance," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    9. Azadegan, Arash & Modi, Sachin & Lucianetti, Lorenzo, 2021. "Surprising supply chain disruptions: Mitigation effects of operational slack and supply redundancy," International Journal of Production Economics, Elsevier, vol. 240(C).
    10. Arsalan Zahid Piprani & Noor Ismawati Jaafar & Suhana Mohezar Ali & Muhammad Shujaat Mubarik & Muhammad Shahbaz, 2022. "Multi-dimensional supply chain flexibility and supply chain resilience: the role of supply chain risks exposure," Operations Management Research, Springer, vol. 15(1), pages 307-325, June.
    11. Dmitry Ivanov & Boris Sokolov, 2019. "Simultaneous structural–operational control of supply chain dynamics and resilience," Annals of Operations Research, Springer, vol. 283(1), pages 1191-1210, December.
    12. Chen, Sai & Zhang, Ming & Ding, Yueting & Nie, Rui, 2020. "Resilience of China's oil import system under external shocks: A system dynamics simulation analysis," Energy Policy, Elsevier, vol. 146(C).
    13. Mahyar Habibi Rad & Mohammad Mojtahedi & Michael J. Ostwald, 2021. "The Integration of Lean and Resilience Paradigms: A Systematic Review Identifying Current and Future Research Directions," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    14. Liu, Yi & Wang, Jianliang, 2024. "Risk analysis and resilience assessment of China's oil imports after the Ukraine Crisis:A network-based dynamics model," Energy, Elsevier, vol. 299(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:57:y:2019:i:20:p:6385-6404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.