IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v270y2023ics0360544223002256.html
   My bibliography  Save this article

Study on China's energy system resilience under the scenarios of long-term shortage of imported oil

Author

Listed:
  • Chen, Sai
  • Ding, Yueting
  • Song, Yan
  • Zhang, Ming
  • Nie, Rui

Abstract

As a resource for human survival, energy is inevitably affected by the turbulence of the world. More than 70% of China's dependence on foreign oil poses a potential threat to its energy security. Generally speaking, short-term oil import shortages can be solved through strategic reserves, emergency production and other measures. However, the long-term import shortage must be addressed through energy transition, efficiency improvement and technological breakthroughs. To explore the ability of China's energy system (CES) to cope with the long-term oil import shortage, we established a CES resilience model under the 17 scenarios of long-term oil import shortage based on the resilience theory and system dynamics (SD). The research conclusions are: CES is relatively resilient and can better cope with long-term oil import shortages. Different measures have different mechanisms for restoring system performance, and the measures during the recovery period should be reasonably configured. Compared with the radical energy transition path, the resilience of CES under the steady energy transition path is about 10% higher.

Suggested Citation

  • Chen, Sai & Ding, Yueting & Song, Yan & Zhang, Ming & Nie, Rui, 2023. "Study on China's energy system resilience under the scenarios of long-term shortage of imported oil," Energy, Elsevier, vol. 270(C).
  • Handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223002256
    DOI: 10.1016/j.energy.2023.126831
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223002256
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126831?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ouyang, Min & Wang, Zhenghua, 2015. "Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 74-82.
    2. Gong, Xu & Wang, You & Lin, Boqiang, 2021. "Assessing dynamic China’s energy security: Based on functional data analysis," Energy, Elsevier, vol. 217(C).
    3. Yuan, Meng & Zhang, Haoran & Wang, Bohong & Huang, Liqiao & Fang, Kai & Liang, Yongtu, 2020. "Downstream oil supply security in China: Policy implications from quantifying the impact of oil import disruption," Energy Policy, Elsevier, vol. 136(C).
    4. Song, Yan & Zhang, Ming & Sun, Ruifeng, 2019. "Using a new aggregated indicator to evaluate China's energy security," Energy Policy, Elsevier, vol. 132(C), pages 167-174.
    5. Wang, Ke & Feng, Lianyong & Wang, Jianliang & Xiong, Yi & Tverberg, Gail E., 2016. "An oil production forecast for China considering economic limits," Energy, Elsevier, vol. 113(C), pages 586-596.
    6. Mei-Mei Xue & Gang Wu & Qian Wang & Yun-Fei Yao & Qiao-Mei Liang, 2019. "Socioeconomic impacts of a shortage in imported oil supply: case of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1415-1430, December.
    7. Ding, Yueting & Chen, Sai & Zheng, Yilei & Chai, Shanglei & Nie, Rui, 2022. "Resilience assessment of China's natural gas system under supply shortages: A system dynamics approach," Energy, Elsevier, vol. 247(C).
    8. Chen, Sai & Ding, Yueting & Zhang, Yanfang & Zhang, Ming & Nie, Rui, 2022. "Study on the robustness of China's oil import network," Energy, Elsevier, vol. 239(PB).
    9. Chen, Sai & Zhang, Ming & Ding, Yueting & Nie, Rui, 2020. "Resilience of China's oil import system under external shocks: A system dynamics simulation analysis," Energy Policy, Elsevier, vol. 146(C).
    10. Liu, Ximei & Zeng, Ming, 2017. "Renewable energy investment risk evaluation model based on system dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 782-788.
    11. Emmanuel Garbolino & Jean‐Pierre Chery & Franck Guarnieri, 2016. "A Simplified Approach to Risk Assessment Based on System Dynamics: An Industrial Case Study," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 16-29, January.
    12. O'Brien, Geoff & Hope, Alex, 2010. "Localism and energy: Negotiating approaches to embedding resilience in energy systems," Energy Policy, Elsevier, vol. 38(12), pages 7550-7558, December.
    13. Chen, Sai & Song, Yan & Ding, Yueting & Zhang, Ming & Nie, Rui, 2021. "Using long short-term memory model to study risk assessment and prediction of China’s oil import from the perspective of resilience theory," Energy, Elsevier, vol. 215(PB).
    14. Yao, Lixia & Chang, Youngho, 2015. "Shaping China's energy security: The impact of domestic reforms," Energy Policy, Elsevier, vol. 77(C), pages 131-139.
    15. Ouyang, Min, 2017. "A mathematical framework to optimize resilience of interdependent critical infrastructure systems under spatially localized attacks," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1072-1084.
    16. Zhang, Long & Bai, Wuliyasu & Xiao, Huijuan & Ren, Jingzheng, 2021. "Measuring and improving regional energy security: A methodological framework based on both quantitative and qualitative analysis," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shengyan & Li, Bingkang & Zhao, Xudong & Hu, Qianchen & Liu, Da, 2024. "Assessing fossil energy supply security in China using ecological network analysis from a supply chain perspective," Energy, Elsevier, vol. 288(C).
    2. Liu, Tianhao & Tian, Jun & Zhu, Hongyu & Goh, Hui Hwang & Liu, Hui & Wu, Thomas & Zhang, Dongdong, 2023. "Key technologies and developments of multi-energy system: Three-layer framework, modelling and optimisation," Energy, Elsevier, vol. 277(C).
    3. Sylvia Mardiana, 2023. "Gasoline Policy Simulation to Increase Responsiveness Using System Dynamics: A Case Study of Indonesia’s Gasoline Downstream Supply Chain," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 109-118, November.
    4. Yang, Weixin & Pan, Lingying & Ding, Qinyi, 2023. "Dynamic analysis of natural gas substitution for crude oil: Scenario simulation and quantitative evaluation," Energy, Elsevier, vol. 282(C).
    5. Ghasemi, Mostafa & Rezk, Hegazy, 2024. "Performance improvement of microbial fuel cell using experimental investigation and fuzzy modelling," Energy, Elsevier, vol. 286(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Sai & Zhang, Ming & Ding, Yueting & Nie, Rui, 2020. "Resilience of China's oil import system under external shocks: A system dynamics simulation analysis," Energy Policy, Elsevier, vol. 146(C).
    2. Guo, Kun & Luan, Liyuan & Cai, Xiaoli & Zhang, Dayong & Ji, Qiang, 2024. "Energy trade stability of China: Policy options with increasing climate risks," Energy Policy, Elsevier, vol. 184(C).
    3. Wang, Kai-Hua & Zhao, Yan-Xin & Su, Yun Hsuan & Lobonţ, Oana-Ramona, 2023. "Energy security and CO2 emissions: New evidence from time-varying and quantile-varying aspects," Energy, Elsevier, vol. 273(C).
    4. Xie, Minghua & Min, Jialin & Fang, Xingming & Sun, Chuanwang & Zhang, Zhen, 2022. "Policy selection based on China's natural gas security evaluation and comparison," Energy, Elsevier, vol. 247(C).
    5. Wang, Feiran & Zhuang, Lu & Cheng, Shasha & Zhang, Yue & Cheng, Shulei, 2024. "Spatiotemporal variation and convergence analysis of China's regional energy security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    6. Hendalianpour, Ayad & Liu, Peide & Amirghodsi, Sirous & Hamzehlou, Mohammad, 2022. "Designing a System Dynamics model to simulate criteria affecting oil and gas development contracts," Resources Policy, Elsevier, vol. 78(C).
    7. Yang, Weixin & Pan, Lingying & Ding, Qinyi, 2023. "Dynamic analysis of natural gas substitution for crude oil: Scenario simulation and quantitative evaluation," Energy, Elsevier, vol. 282(C).
    8. Wang, Deqing & Tian, Sihua & Fang, Lei & Xu, Yan, 2020. "A functional index model for dynamically evaluating China's energy security," Energy Policy, Elsevier, vol. 147(C).
    9. Zhu, Bo & Deng, Yuanyue & Lin, Renda & Hu, Xin & Chen, Pingshe, 2022. "Energy security: Does systemic risk spillover matter? Evidence from China," Energy Economics, Elsevier, vol. 114(C).
    10. Gong, Xu & Sun, Yi & Du, Zhili, 2022. "Geopolitical risk and China's oil security," Energy Policy, Elsevier, vol. 163(C).
    11. Zhu, Bo & Deng, Yuanyue & Hu, Xin, 2023. "Global energy security: Do internal and external risk spillovers matter? A multilayer network method," Energy Economics, Elsevier, vol. 126(C).
    12. Ding, Yueting & Chen, Sai & Zheng, Yilei & Chai, Shanglei & Nie, Rui, 2022. "Resilience assessment of China's natural gas system under supply shortages: A system dynamics approach," Energy, Elsevier, vol. 247(C).
    13. Jingjing Kong & Slobodan P. Simonovic, 2019. "Probabilistic Multiple Hazard Resilience Model of an Interdependent Infrastructure System," Risk Analysis, John Wiley & Sons, vol. 39(8), pages 1843-1863, August.
    14. Liu, Wei & Li, Xin & Liu, Chunyan & Wang, Minxi & Liu, Litao, 2023. "Resilience assessment of the cobalt supply chain in China under the impact of electric vehicles and geopolitical supply risks," Resources Policy, Elsevier, vol. 80(C).
    15. Jingjing Kong & Slobodan P. Simonovic & Chao Zhang, 2019. "Resilience Assessment of Interdependent Infrastructure Systems: A Case Study Based on Different Response Strategies," Sustainability, MDPI, vol. 11(23), pages 1-31, November.
    16. Das, Laya & Munikoti, Sai & Natarajan, Balasubramaniam & Srinivasan, Babji, 2020. "Measuring smart grid resilience: Methods, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    17. Jia, Chuanzhou & Zhang, Chi & Li, Yan-Fu & Li, Quan-Lin, 2023. "Joint pre- and post-disaster planning to enhance the resilience of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    18. Loh, Jiong Rui & Bellam, Sreenivasulu, 2024. "Towards net zero: Evaluating energy security in Singapore using system dynamics modelling," Applied Energy, Elsevier, vol. 358(C).
    19. Boyd, Roger & Ufimtseva, Anastasia, 2021. "Facilitating peaceful rise: The increasing role of geopolitics and domestic legitimacy in China's energy policy," Energy Policy, Elsevier, vol. 158(C).
    20. Chen, Sai & Song, Yan & Ding, Yueting & Zhang, Ming & Nie, Rui, 2021. "Using long short-term memory model to study risk assessment and prediction of China’s oil import from the perspective of resilience theory," Energy, Elsevier, vol. 215(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223002256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.