IDEAS home Printed from https://ideas.repec.org/a/eee/chieco/v50y2018icp17-33.html
   My bibliography  Save this article

Towards a low carbon economy by removing fossil fuel subsidies?

Author

Listed:
  • Li, Jianglong
  • Sun, Chuanwang

Abstract

An important environmental consequence of subsidies for fossil fuels is that it encourages the substitution from renewable energy, capital and labor to fossil fuels, and thus impedes the low carbon transition. To reduce energy consumption and energy-related greenhouse gas emissions, there is a renewed interest in phasing out fossil fuel subsidies. In policy debates, it is commonly believed that fossil fuel subsidies encourage wasteful energy consuming, and thus removing them would depress energy-related carbon dioxide (CO2) emissions. But whether it is the real case and the magnitude of mitigation by removing fossil fuel subsidies are still unanswered. Here we provide an opposite insight in this paper. We find that fossil fuel subsidies in China might have been removed in total in 2015, but further attention should be paid to whether the removal is caused by the market condition of low energy prices, or by the on-going market-oriented reforms. Furthermore, during the periods with positive subsidies, removing fossil fuel subsidies alone cannot achieve CO2 mitigation because it would lead to the substitution from low-emitted fuels to high-emitted coal and from capital and labor to energy. Our results demonstrate that additional policies and efforts will be required to fulfill the aspirations for low carbon economy. The findings in this paper may be extended to emerging and developing countries due to their similar conditions of fossil fuel subsidies.

Suggested Citation

  • Li, Jianglong & Sun, Chuanwang, 2018. "Towards a low carbon economy by removing fossil fuel subsidies?," China Economic Review, Elsevier, vol. 50(C), pages 17-33.
  • Handle: RePEc:eee:chieco:v:50:y:2018:i:c:p:17-33
    DOI: 10.1016/j.chieco.2018.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1043951X18300361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chieco.2018.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coady, David & Parry, Ian & Sears, Louis & Shang, Baoping, 2017. "How Large Are Global Fossil Fuel Subsidies?," World Development, Elsevier, vol. 91(C), pages 11-27.
    2. Breton, Michèle & Mirzapour, Hossein, 2016. "Welfare implication of reforming energy consumption subsidies," Energy Policy, Elsevier, vol. 98(C), pages 232-240.
    3. Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013. "Forecasting the Price of Oil," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507, Elsevier.
    4. Urga, Giovanni & Walters, Chris, 2003. "Dynamic translog and linear logit models: a factor demand analysis of interfuel substitution in US industrial energy demand," Energy Economics, Elsevier, vol. 25(1), pages 1-21, January.
    5. Apostolos Serletis, 2012. "Interfuel Substitution in the United States," World Scientific Book Chapters, in: Interfuel Substitution, chapter 2, pages 11-35, World Scientific Publishing Co. Pte. Ltd..
    6. Christiane Baumeister & Gert Peersman, 2013. "The Role Of Time‐Varying Price Elasticities In Accounting For Volatility Changes In The Crude Oil Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(7), pages 1087-1109, November.
    7. Ma, Hengyun & Oxley, Les & Gibson, John & Kim, Bonggeun, 2008. "China's energy economy: Technical change, factor demand and interfactor/interfuel substitution," Energy Economics, Elsevier, vol. 30(5), pages 2167-2183, September.
    8. Diaz Arias, Adriana & van Beers, Cees, 2013. "Energy subsidies, structure of electricity prices and technological change of energy use," Energy Economics, Elsevier, vol. 40(C), pages 495-502.
    9. Lin, Boqiang & Jiang, Zhujun, 2011. "Estimates of energy subsidies in China and impact of energy subsidy reform," Energy Economics, Elsevier, vol. 33(2), pages 273-283, March.
    10. Lin, Boqiang & Yang, Lisha, 2014. "Efficiency effect of changing investment structure on China׳s power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 403-411.
    11. Douglas Gollin, 2002. "Getting Income Shares Right," Journal of Political Economy, University of Chicago Press, vol. 110(2), pages 458-474, April.
    12. Yang, Mian & Yang, Fuxia & Sun, Chuanwang, 2018. "Factor market distortion correction, resource reallocation and potential productivity gains: An empirical study on China's heavy industry sector," Energy Economics, Elsevier, vol. 69(C), pages 270-279.
    13. Yang, Mian & Fan, Ying & Yang, Fuxia & Hu, Hui, 2014. "Regional disparities in carbon dioxide reduction from China's uniform carbon tax: A perspective on interfactor/interfuel substitution," Energy, Elsevier, vol. 74(C), pages 131-139.
    14. Ouyang, Xiaoling & Sun, Chuanwang, 2015. "Energy savings potential in China's industrial sector: From the perspectives of factor price distortion and allocative inefficiency," Energy Economics, Elsevier, vol. 48(C), pages 117-126.
    15. Frondel, Manuel, 2004. "Empirical assessment of energy-price policies: the case for cross-price elasticities," Energy Policy, Elsevier, vol. 32(8), pages 989-1000, June.
    16. Zhang, Ning & Kong, Fanbin & Choi, Yongrok & Zhou, P., 2014. "The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants," Energy Policy, Elsevier, vol. 70(C), pages 193-200.
    17. Li, Ke & Lin, Boqiang, 2015. "Measuring green productivity growth of Chinese industrial sectors during 1998–2011," China Economic Review, Elsevier, vol. 36(C), pages 279-295.
    18. Lin, Boqiang & Li, Jianglong, 2014. "The rebound effect for heavy industry: Empirical evidence from China," Energy Policy, Elsevier, vol. 74(C), pages 589-599.
    19. Li, Jianglong & Lin, Boqiang, 2016. "Inter-factor/inter-fuel substitution, carbon intensity, and energy-related CO2 reduction: Empirical evidence from China," Energy Economics, Elsevier, vol. 56(C), pages 483-494.
    20. Chen, Shiyi & Jefferson, Gary H. & Zhang, Jun, 2011. "Structural change, productivity growth and industrial transformation in China," China Economic Review, Elsevier, vol. 22(1), pages 133-150, March.
    21. Boqiang Lin & Chang Liu & Lei Lin, 2015. "The Effect of China’s Natural Gas Pricing Reform," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 51(4), pages 812-825, July.
    22. Lin, Boqiang & Li, Jianglong, 2015. "Analyzing cost of grid-connection of renewable energy development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1373-1382.
    23. Pindyck, Robert S, 1979. "Interfuel Substitution and the Industrial Demand for Energy: An International Comparison," The Review of Economics and Statistics, MIT Press, vol. 61(2), pages 169-179, May.
    24. Newbery, David M., 2016. "Towards a green energy economy? The EU Energy Union’s transition to a low-carbon zero subsidy electricity system – Lessons from the UK’s Electricity Market Reform," Applied Energy, Elsevier, vol. 179(C), pages 1321-1330.
    25. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    26. Mork, Knut Anton, 1989. "Oil and Macroeconomy When Prices Go Up and Down: An Extension of Hamilton's Results," Journal of Political Economy, University of Chicago Press, vol. 97(3), pages 740-744, June.
    27. Cho, Won G. & Nam, Kiseok & Pagan, Jose A., 2004. "Economic growth and interfactor/interfuel substitution in Korea," Energy Economics, Elsevier, vol. 26(1), pages 31-50, January.
    28. Liu, Wei & Li, Hong, 2011. "Improving energy consumption structure: A comprehensive assessment of fossil energy subsidies reform in China," Energy Policy, Elsevier, vol. 39(7), pages 4134-4143, July.
    29. Lutz Kilian & Bruce Hicks, 2013. "Did Unexpectedly Strong Economic Growth Cause the Oil Price Shock of 2003–2008?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(5), pages 385-394, August.
    30. Floros, Nikolaos & Vlachou, Andriana, 2005. "Energy demand and energy-related CO2 emissions in Greek manufacturing: Assessing the impact of a carbon tax," Energy Economics, Elsevier, vol. 27(3), pages 387-413, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jianglong & Lin, Boqiang, 2016. "Inter-factor/inter-fuel substitution, carbon intensity, and energy-related CO2 reduction: Empirical evidence from China," Energy Economics, Elsevier, vol. 56(C), pages 483-494.
    2. Lin, Boqiang & Xu, Mengmeng, 2019. "Good subsidies or bad subsidies? Evidence from low-carbon transition in China's metallurgical industry," Energy Economics, Elsevier, vol. 83(C), pages 52-60.
    3. Wang, Xiaolei & Bai, Mengqi & Xie, Chunping, 2019. "Investigating CO2 mitigation potentials and the impact of oil price distortion in China's transport sector," Energy Policy, Elsevier, vol. 130(C), pages 320-327.
    4. Liu, Kui & Bai, Hongkun & Yin, Shuo & Lin, Boqiang, 2018. "Factor substitution and decomposition of carbon intensity in China's heavy industry," Energy, Elsevier, vol. 145(C), pages 582-591.
    5. Wang, Ailun & Lin, Boqiang, 2020. "Structural optimization and carbon taxation in China's commercial sector," Energy Policy, Elsevier, vol. 140(C).
    6. Wu, Liangpeng & Xu, Chengzhen & Zhu, Qingyuan & Zhou, Dequn, 2024. "Multiple energy price distortions and improvement of potential energy consumption structure in the energy transition," Applied Energy, Elsevier, vol. 362(C).
    7. Runqing Zhu & Boqiang Lin, 2022. "How Does the Carbon Tax Influence the Energy and Carbon Performance of China’s Mining Industry?," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    8. Jianglong Li & Zhi Li, 2018. "Understanding the role of economic transition in enlarging energy price elasticity," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 26(2), pages 253-281, April.
    9. Xu, Mengmeng & Lin, Boqiang, 2022. "Energy efficiency gains from distortion mitigation: A perspective on the metallurgical industry," Resources Policy, Elsevier, vol. 77(C).
    10. Bello, Mufutau Opeyemi & Solarin, Sakiru Adebola & Yen, Yuen Yee, 2018. "Hydropower and potential for interfuel substitution: The case of electricity sector in Malaysia," Energy, Elsevier, vol. 151(C), pages 966-983.
    11. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
    12. Haishu Qiao & Ying Li & Julien Chevallier & Bangzhu Zhu, 2016. "Capital–energy substitution in China: regional differences and dynamic evolution," Post-Communist Economies, Taylor & Francis Journals, vol. 28(4), pages 421-435, October.
    13. Zhang, Yi & Ji, Qiang & Fan, Ying, 2018. "The price and income elasticity of China's natural gas demand: A multi-sectoral perspective," Energy Policy, Elsevier, vol. 113(C), pages 332-341.
    14. Li, Jianglong & Lin, Boqiang, 2017. "Does energy and CO2 emissions performance of China benefit from regional integration?," Energy Policy, Elsevier, vol. 101(C), pages 366-378.
    15. David I. Stern, 2012. "Interfuel Substitution: A Meta‐Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 26(2), pages 307-331, April.
    16. Jin, Gang & Yu, Binbin & Shen, Kunrong, 2021. "Domestic trade and energy productivity in China: An inverted U-shaped relationship," Energy Economics, Elsevier, vol. 97(C).
    17. Ru Sha & Tao Ge & Jinye Li, 2022. "How Energy Price Distortions Affect China’s Economic Growth and Carbon Emissions," Sustainability, MDPI, vol. 14(12), pages 1-27, June.
    18. Lin, Boqiang & Wesseh, Presley K., 2013. "Estimates of inter-fuel substitution possibilities in Chinese chemical industry," Energy Economics, Elsevier, vol. 40(C), pages 560-568.
    19. Lutz Kilian & Xiaoqing Zhou, 2023. "The Econometrics of Oil Market VAR Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 65-95, Emerald Group Publishing Limited.
    20. Yang, Mian & Fan, Ying & Yang, Fuxia & Hu, Hui, 2014. "Regional disparities in carbon dioxide reduction from China's uniform carbon tax: A perspective on interfactor/interfuel substitution," Energy, Elsevier, vol. 74(C), pages 131-139.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chieco:v:50:y:2018:i:c:p:17-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/chieco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.