IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v110y2017icp478-489.html
   My bibliography  Save this article

Distributed photovoltaic power generation: Possibilities, benefits, and challenges for a widespread application in the Mexican residential sector

Author

Listed:
  • Hancevic, Pedro I.
  • Nuñez, Hector M.
  • Rosellon, Juan

Abstract

Mexico plans to implement a national program to support the adoption of distributed photo-voltaic generation (DPVG) among qualified households. The main objectives of such a program would be to reduce the burden of the substantial federal energy subsidy and increase the share of renewable energy sources used to generate electricity. In this paper we assess the current conditions under which the Mexican residential electricity sector operates, and quantify the potential effects that the massive adoption of DPV systems would have on household expenditure and welfare, subsidy reduction, pollution and water resource usage. Based on the positive results in terms of both economic and environmental effects, our paper provides a significant support for further design and implementation of a DPVG program.

Suggested Citation

  • Hancevic, Pedro I. & Nuñez, Hector M. & Rosellon, Juan, 2017. "Distributed photovoltaic power generation: Possibilities, benefits, and challenges for a widespread application in the Mexican residential sector," Energy Policy, Elsevier, vol. 110(C), pages 478-489.
  • Handle: RePEc:eee:enepol:v:110:y:2017:i:c:p:478-489
    DOI: 10.1016/j.enpol.2017.08.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517305529
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.08.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Scarpa, Riccardo & Willis, Ken, 2010. "Willingness-to-pay for renewable energy: Primary and discretionary choice of British households' for micro-generation technologies," Energy Economics, Elsevier, vol. 32(1), pages 129-136, January.
    2. Cont, Walter & Hancevic, Pedro & Navajas, Fernando, 2008. "Infraestructura y aspectos distributivos en la tarificación de los servicios públicos: ámbito y posibilidades de la tarifa social en la Argentina," Research Department working papers 227, CAF Development Bank Of Latinamerica.
    3. Pillai, Gobind G. & Putrus, Ghanim A. & Georgitsioti, Tatiani & Pearsall, Nicola M., 2014. "Near-term economic benefits from grid-connected residential PV (photovoltaic) systems," Energy, Elsevier, vol. 68(C), pages 832-843.
    4. Dubin, Jeffrey A & McFadden, Daniel L, 1984. "An Econometric Analysis of Residential Electric Appliance Holdings and Consumption," Econometrica, Econometric Society, vol. 52(2), pages 345-362, March.
    5. Hancevic, Pedro & Cont, Walter & Navajas, Fernando, 2016. "Energy populism and household welfare," Energy Economics, Elsevier, vol. 56(C), pages 464-474.
    6. Newbery, David M, 1995. "The Distributional Impact of Price Changes in Hungary and the United Kingdom," Economic Journal, Royal Economic Society, vol. 105(431), pages 847-863, July.
    7. Mitscher, Martin & Rüther, Ricardo, 2012. "Economic performance and policies for grid-connected residential solar photovoltaic systems in Brazil," Energy Policy, Elsevier, vol. 49(C), pages 688-694.
    8. Navajas, Fernando H., 2009. "Engel curves, household characteristics and low-user tariff schemes in natural gas," Energy Economics, Elsevier, vol. 31(1), pages 162-168, January.
    9. Hancevic, Pedro Ignacio & Lopez-Aguilar, Javier Alejandro, 2019. "Energy efficiency programs in the context of increasing block tariffs: The case of residential electricity in Mexico," Energy Policy, Elsevier, vol. 131(C), pages 320-331.
    10. Mills, Bradford & Schleich, Joachim, 2012. "Residential energy-efficient technology adoption, energy conservation, knowledge, and attitudes: An analysis of European countries," Energy Policy, Elsevier, vol. 49(C), pages 616-628.
    11. Alexandre Kossoy & Grzegorz Peszko & Klaus Oppermann & Nicolai Prytz & Noemie Klein & Kornelis Blok & Long Lam & Lindee Wong & Bram Borkent, "undated". "State and Trends of Carbon Pricing 2015," World Bank Publications - Reports 22630, The World Bank Group.
    12. Yufei Wang & Qijiao Song & Jijiang He & Ye Qi, 2015. "Developing low-carbon cities through pilots," Climate Policy, Taylor & Francis Journals, vol. 15(sup1), pages 81-103, December.
    13. Li, Huanan & Wei, Yi-Ming & Mi, Zhifu, 2015. "China’s carbon flow: 2008–2012," Energy Policy, Elsevier, vol. 80(C), pages 45-53.
    14. Katrina Jessoe & David Rapson, 2014. "Knowledge Is (Less) Power: Experimental Evidence from Residential Energy Use," American Economic Review, American Economic Association, vol. 104(4), pages 1417-1438, April.
    15. Lin, Boqiang & Lei, Xiaojing, 2015. "Carbon emissions reduction in China's food industry," Energy Policy, Elsevier, vol. 86(C), pages 483-492.
    16. Bazilian, Morgan & Onyeji, Ijeoma & Liebreich, Michael & MacGill, Ian & Chase, Jennifer & Shah, Jigar & Gielen, Dolf & Arent, Doug & Landfear, Doug & Zhengrong, Shi, 2013. "Re-considering the economics of photovoltaic power," Renewable Energy, Elsevier, vol. 53(C), pages 329-338.
    17. Hancevic, Pedro & Navajas, Fernando, 2015. "Consumo residencial de electricidad y eficiencia energética. Un enfoque de regresión cuantílica," El Trimestre Económico, Fondo de Cultura Económica, vol. 0(328), pages .897-927, octubre-d.
    18. Lucas W. Davis & Alan Fuchs & Paul Gertler, 2014. "Cash for Coolers: Evaluating a Large-Scale Appliance Replacement Program in Mexico," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 207-238, November.
    19. Long, James E., 1993. "An econometric analysis of residential expenditures on energy conservation and renewable energy sources," Energy Economics, Elsevier, vol. 15(4), pages 232-238, October.
    20. Grande, Genice & Islas, Jorge & Rios, Mario, 2015. "Technical and economic analysis of Domestic High Consumption Tariff niche market for photovoltaic systems in the Mexican household sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 738-748.
    21. Salim, Ruhul A. & Rafiq, Shuddhasattwa, 2012. "Why do some emerging economies proactively accelerate the adoption of renewable energy?," Energy Economics, Elsevier, vol. 34(4), pages 1051-1057.
    22. Nekrasenko Larysa An. & Prokopenko Olha V., 2015. "The Economic Valuation of Carbon Footprint," Baltic Journal of Real Estate Economics and Construction Management, Sciendo, vol. 3(1), pages 120-129, December.
    23. Alemán-Nava, Gibrán S. & Casiano-Flores, Victor H. & Cárdenas-Chávez, Diana L. & Díaz-Chavez, Rocío & Scarlat, Nicolae & Mahlknecht, Jürgen & Dallemand, Jean-Francois & Parra, Roberto, 2014. "Renewable energy research progress in Mexico: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 140-153.
    24. Gottwalt, Sebastian & Ketter, Wolfgang & Block, Carsten & Collins, John & Weinhardt, Christof, 2011. "Demand side management—A simulation of household behavior under variable prices," Energy Policy, Elsevier, vol. 39(12), pages 8163-8174.
    25. Bergmann, Ariel & Colombo, Sergio & Hanley, Nick, 2008. "Rural versus urban preferences for renewable energy developments," Ecological Economics, Elsevier, vol. 65(3), pages 616-625, April.
    26. Willis, Ken & Scarpa, Riccardo & Gilroy, Rose & Hamza, Neveen, 2011. "Renewable energy adoption in an ageing population: Heterogeneity in preferences for micro-generation technology adoption," Energy Policy, Elsevier, vol. 39(10), pages 6021-6029, October.
    27. Islam, Towhidul & Meade, Nigel, 2013. "The impact of attribute preferences on adoption timing: The case of photo-voltaic (PV) solar cells for household electricity generation," Energy Policy, Elsevier, vol. 55(C), pages 521-530.
    28. Bhuiyan, M.M.H & Asgar, M.Ali & Mazumder, R.K & Hussain, M, 2000. "Economic evaluation of a stand-alone residential photovoltaic power system in Bangladesh," Renewable Energy, Elsevier, vol. 21(3), pages 403-410.
    29. Feldstein, Martin S, 1972. "Distributional Equity and the Optimal Structure of Public Prices," American Economic Review, American Economic Association, vol. 62(1), pages 32-36, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yongli & Gao, Mingchen & Wang, Jingyan & Wang, Shuo & Liu, Yang & Zhu, Jinrong & Tan, Zhongfu, 2021. "Measurement and key influencing factors of the economic benefits for China’s photovoltaic power generation: A LCOE-based hybrid model," Renewable Energy, Elsevier, vol. 169(C), pages 935-952.
    2. Gutiérrez-Meave, Raúl & Rosellón, Juan & Sarmiento, Luis, 2021. "The Effect of Changing Marginal-Cost to Physical-Order Dispatch in the Power Sector," RFF Working Paper Series 21-19, Resources for the Future.
    3. Shali Wang & Jiaxi Wu & Yunan Peng & Jane Xu & Lisa Leinonen & Yuyu Wang & Zheng Meng, 2022. "Influence of Residential Photovoltaic Promotion Policy on Installation Intention in Typical Regions of China," Sustainability, MDPI, vol. 14(14), pages 1-30, July.
    4. Hancevic, Pedro Ignacio & Lopez-Aguilar, Javier Alejandro, 2019. "Energy efficiency programs in the context of increasing block tariffs: The case of residential electricity in Mexico," Energy Policy, Elsevier, vol. 131(C), pages 320-331.
    5. Rafael C. Borges & Carlos H. Beuter & Vitória C. Dourado & Murilo E. C. Bento, 2024. "Internet of Things Application in an Automated Irrigation Prototype Powered by Photovoltaic Energy," Energies, MDPI, vol. 17(9), pages 1-18, May.
    6. Peprah, Forson & Gyamfi, Samuel & Effah-Donyina, Eric & Amo-Boateng, Mark, 2023. "The pathway for electricity prosumption in Ghana," Energy Policy, Elsevier, vol. 177(C).
    7. Wang, Xiaozhen & Zheng, Ying & Jiang, Zihao & Tao, Ziyang, 2021. "Influence mechanism of subsidy policy on household photovoltaic purchase intention under an urban-rural divide in China," Energy, Elsevier, vol. 220(C).
    8. Sarah A. Elariane & Jean Dubé, 2019. "Is Smart Housing a Good Deal? An Answer Based on Monte Carlo Net Present Value Analysis," Sustainability, MDPI, vol. 11(15), pages 1-29, August.
    9. Xu, Xinkuo & Guan, Chengmei & Jin, Jiayu, 2018. "Valuing the carbon assets of distributed photovoltaic generation in China," Energy Policy, Elsevier, vol. 121(C), pages 374-382.
    10. Hancevic, Pedro I. & Sandoval, Hector H., 2023. "Solar panel adoption among Mexican small and medium-sized commercial and service businesses," Energy Economics, Elsevier, vol. 126(C).
    11. Xin-gang, Zhao & Yi-min, Xie, 2019. "The economic performance of industrial and commercial rooftop photovoltaic in China," Energy, Elsevier, vol. 187(C).
    12. Pedro I. Hancevic & Hector H. Sandoval, 2023. "Solar Panel Adoption in SMEs in Emerging Countries," Working Papers 222, Red Nacional de Investigadores en Economía (RedNIE).
    13. Qi Zhao & Xiaoyue Liu & Shijie Gu & Jin Tao & Wende Wu & Shuang Ma & Hongwen Jin, 2024. "Experimental Study on a Photovoltaic Direct-Drive and Municipal Electricity-Coupled Electric Heating System for a Low-Energy Building in Changchun, China," Energies, MDPI, vol. 17(9), pages 1-25, April.
    14. Consolación Quintana-Rojo & Fernando-Evaristo Callejas-Albiñana & Miguel-Ángel Tarancón & Isabel Martínez-Rodríguez, 2020. "Econometric Studies on the Development of Renewable Energy Sources to Support the European Union 2020–2030 Climate and Energy Framework: A Critical Appraisal," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    15. McRae, Shaun D. & Wolak, Frank A., 2021. "Retail pricing in Colombia to support the efficient deployment of distributed generation and electric stoves," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    16. Martínez-Cruz, Adán L. & Núñez, Héctor M., 2021. "Tension in Mexico's energy transition: Are urban residential consumers in Aguascalientes willing to pay for renewable energy and green jobs?," Energy Policy, Elsevier, vol. 150(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruokamo, Enni, 2016. "Household preferences of hybrid home heating systems – A choice experiment application," Energy Policy, Elsevier, vol. 95(C), pages 224-237.
    2. Cardella, Eric & Ewing, Brad & Williams, Ryan Blake, 2018. "Green is Good – The Impact of Information Nudges on the Adoption of Voluntary Green Power Plans," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266583, Southern Agricultural Economics Association.
    3. Spyridaki, Niki-Artemis & Stavrakas, Vassilis & Dendramis, Yiannis & Flamos, Alexandros, 2020. "Understanding technology ownership to reveal adoption trends for energy efficiency measures in the Greek residential sector," Energy Policy, Elsevier, vol. 140(C).
    4. Aldo Gutiérrez Mendieta, 2016. "Determinantes de consumo eficiente de energía eléctrica en el sector residencial en México: un enfoque de regresión cuantílica," Graduate theses (Spanish) TESG 010, CIDE, División de Economía.
    5. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    6. Jeong, Gicheol, 2013. "Assessment of government support for the household adoption of micro-generation systems in Korea," Energy Policy, Elsevier, vol. 62(C), pages 573-581.
    7. Baldini, Mattia & Trivella, Alessio & Wente, Jordan William, 2018. "The impact of socioeconomic and behavioural factors for purchasing energy efficient household appliances: A case study for Denmark," Energy Policy, Elsevier, vol. 120(C), pages 503-513.
    8. Spyridon Karytsas & Ioannis Vardopoulos & Eleni Theodoropoulou, 2019. "Factors Affecting Sustainable Market Acceptance of Residential Microgeneration Technologies. A Two Time Period Comparative Analysis," Energies, MDPI, vol. 12(17), pages 1-20, August.
    9. Karytsas, Spyridon & Polyzou, Olympia & Karytsas, Constantine, 2019. "Factors affecting willingness to adopt and willingness to pay for a residential hybrid system that provides heating/cooling and domestic hot water," Renewable Energy, Elsevier, vol. 142(C), pages 591-603.
    10. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    11. Dalia Streimikiene & Tomas Balezentis & Ilona Alisauskaite-Seskiene & Gintare Stankuniene & Zaneta Simanaviciene, 2019. "A Review of Willingness to Pay Studies for Climate Change Mitigation in the Energy Sector," Energies, MDPI, vol. 12(8), pages 1-38, April.
    12. Hye-Jeong Lee & Sung-Yoon Huh & Seung-Hoon Yoo, 2018. "Social Preferences for Small-Scale Solar Photovoltaic Power Plants in South Korea: A Choice Experiment Study," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    13. Karytsas, Spyridon & Theodoropoulou, Helen, 2014. "Public awareness and willingness to adopt ground source heat pumps for domestic heating and cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 49-57.
    14. Bao, Qifang & Sinitskaya, Ekaterina & Gomez, Kelley J. & MacDonald, Erin F. & Yang, Maria C., 2020. "A human-centered design approach to evaluating factors in residential solar PV adoption: A survey of homeowners in California and Massachusetts," Renewable Energy, Elsevier, vol. 151(C), pages 503-513.
    15. Franceschinis, Cristiano & Thiene, Mara & Scarpa, Riccardo & Rose, John & Moretto, Michele & Cavalli, Raffaele, 2017. "Adoption of renewable heating systems: An empirical test of the diffusion of innovation theory," Energy, Elsevier, vol. 125(C), pages 313-326.
    16. Wasi, Nada & Carson, Richard T., 2013. "The influence of rebate programs on the demand for water heaters: The case of New South Wales," Energy Economics, Elsevier, vol. 40(C), pages 645-656.
    17. Galassi, Veronica & Madlener, Reinhard, 2014. "Identifying Business Models for Photovoltaic Systems with Storage in the Italian Market: A Discrete Choice Experiment," FCN Working Papers 19/2014, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    18. Francisco Costa & François Gerard, 2021. "Hysteresis and the Welfare Effect of Corrective Policies: Theory and Evidence from an Energy-Saving Program," Journal of Political Economy, University of Chicago Press, vol. 129(6), pages 1705-1743.
    19. Jingchao, Zhang & Kotani, Koji & Saijo, Tatsuyoshi, 2018. "Public acceptance of environmentally friendly heating in Beijing: A case of a low temperature air source heat pump," Energy Policy, Elsevier, vol. 117(C), pages 75-85.
    20. Jacobsen, Grant D., 2015. "Do energy prices influence investment in energy efficiency? Evidence from energy star appliances," Journal of Environmental Economics and Management, Elsevier, vol. 74(C), pages 94-106.

    More about this item

    Keywords

    Distributed solar photovoltaic generation; Residential electricity consumption; Energy subsidies; Air pollution; Water resource usage;
    All these keywords.

    JEL classification:

    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • L50 - Industrial Organization - - Regulation and Industrial Policy - - - General
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:110:y:2017:i:c:p:478-489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.