IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8659-d863344.html
   My bibliography  Save this article

Influence of Residential Photovoltaic Promotion Policy on Installation Intention in Typical Regions of China

Author

Listed:
  • Shali Wang

    (School of Management, China University of Mining & Technology (Beijing), Beijing 100083, China
    These authors contributed equally to this work.)

  • Jiaxi Wu

    (School of Management, China University of Mining & Technology (Beijing), Beijing 100083, China
    These authors contributed equally to this work.)

  • Yunan Peng

    (School of Management, China University of Mining & Technology (Beijing), Beijing 100083, China)

  • Jane Xu

    (Faculty of Social Sciences and Business Studies, University of Eastern Finland, FI-70211 Kuopio, Finland)

  • Lisa Leinonen

    (Faculty of Social Sciences and Business Studies, University of Eastern Finland, FI-70211 Kuopio, Finland)

  • Yuyu Wang

    (Faculty of Social Sciences and Business Studies, University of Eastern Finland, FI-70211 Kuopio, Finland)

  • Zheng Meng

    (School of Management, China University of Mining & Technology (Beijing), Beijing 100083, China)

Abstract

Increasing the popularity of distributed photovoltaic technology among Chinese residents is of great significance to achieve the dual carbon goal (emission peak and carbon neutrality). In this study, we collected 1424 questionnaire samples and used PLS-SEM for group modeling and comparative analysis of bungalow and building residents. The results show that living conditions, costs, risks of installation, maintenance, and economic efficiency are the five significant influencing factors for residents to decide whether to install a distributed residential photovoltaic equipment. Compared with building residents, bungalow residents tend to feel more concerned about the cost and risk of residential photovoltaic equipment during installation, maintenance, and use. On the other hand, bungalow residents show greater sensitivity to the corresponding photovoltaic promotion policies. By contrast, building residents pay more attention to the direct benefit created by the installation of residential photovoltaic equipment. Therefore, adopting the strategy from bungalow residents to building residents could help promote the distributed photovoltaic system progressively. As for the subsidy decline, more attention shall be paid to the progress of a gradual reduction of the subsidies. It is advisable to pay attention to integrating the upstream and downstream industry chains of the distributed photovoltaic systems, thus reducing the concern of residents about the difficulty in installing, maintaining, and protecting the distributed photovoltaic equipment. By clarifying the different impacts of promotion policies on the demand side, this study provides a practical reference for the further adjustment made to distributed photovoltaic promotion policies.

Suggested Citation

  • Shali Wang & Jiaxi Wu & Yunan Peng & Jane Xu & Lisa Leinonen & Yuyu Wang & Zheng Meng, 2022. "Influence of Residential Photovoltaic Promotion Policy on Installation Intention in Typical Regions of China," Sustainability, MDPI, vol. 14(14), pages 1-30, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8659-:d:863344
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8659/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8659/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lapo Mola & Quentin Berger & Karoliina Haavisto & Isabella Soscia, 2020. "Mobility as a Service: An Exploratory Study of Consumer Mobility Behaviour," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    2. Hancevic, Pedro I. & Nuñez, Hector M., 2017. "Distributed Photovoltaic Power Generation: A Widespread Application in the Mexican Residential Sector," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258129, Agricultural and Applied Economics Association.
    3. Sioshansi, Ramteen, 2016. "Retail electricity tariff and mechanism design to incentivize distributed renewable generation," Energy Policy, Elsevier, vol. 95(C), pages 498-508.
    4. Karjalainen, Sami & Ahvenniemi, Hannele, 2019. "Pleasure is the profit - The adoption of solar PV systems by households in Finland," Renewable Energy, Elsevier, vol. 133(C), pages 44-52.
    5. Muhammad-Sukki, Firdaus & Ramirez-Iniguez, Roberto & Abu-Bakar, Siti Hawa & McMeekin, Scott G. & Stewart, Brian G., 2011. "An evaluation of the installation of solar photovoltaic in residential houses in Malaysia: Past, present, and future," Energy Policy, Elsevier, vol. 39(12), pages 7975-7987.
    6. Du, Mengbing & Zhang, Xiaoling & Xia, Lang & Cao, Libin & Zhang, Zhe & Zhang, Li & Zheng, Heran & Cai, Bofeng, 2022. "The China Carbon Watch (CCW) system: A rapid accounting of household carbon emissions in China at the provincial level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Wenjie Zhang & Yuqiang Zhao & Fengcheng Huang & Yongheng Zhong & Jianwei Zhou, 2021. "Forecasting the Energy and Economic Benefits of Photovoltaic Technology in China’s Rural Areas," Sustainability, MDPI, vol. 13(15), pages 1-22, July.
    8. Parkins, John R. & Rollins, Curtis & Anders, Sven & Comeau, Louise, 2018. "Predicting intention to adopt solar technology in Canada: The role of knowledge, public engagement, and visibility," Energy Policy, Elsevier, vol. 114(C), pages 114-122.
    9. Hancevic, Pedro I. & Nuñez, Hector M. & Rosellon, Juan, 2017. "Distributed photovoltaic power generation: Possibilities, benefits, and challenges for a widespread application in the Mexican residential sector," Energy Policy, Elsevier, vol. 110(C), pages 478-489.
    10. Shuai Wang & Yao Li & Junjun Jia, 2022. "How to promote sustainable adoption of residential distributed photovoltaic generation in China? An employment of incentive and punitive policies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(2), pages 1-26, February.
    11. Park, Chan-Kook & Kim, Hyun-Jae & Kim, Yang-Soo, 2014. "A study of factors enhancing smart grid consumer engagement," Energy Policy, Elsevier, vol. 72(C), pages 211-218.
    12. Martinez-Poveda, Africa & Molla-Bauza, Margarita Brugarolas & del Campo Gomis, Francisco Jose & Martinez, Laura Martinez-Carrasco, 2009. "Consumer-perceived risk model for the introduction of genetically modified food in Spain," Food Policy, Elsevier, vol. 34(6), pages 519-528, December.
    13. D’Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The economic viability of photovoltaic systems in public buildings: Evidence from Italy," Energy, Elsevier, vol. 207(C).
    14. Rajabi, A. & Elphick, S. & David, J. & Pors, A. & Robinson, D., 2022. "Innovative approaches for assessing and enhancing the hosting capacity of PV-rich distribution networks: An Australian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    15. De Groote, Olivier & Pepermans, Guido & Verboven, Frank, 2016. "Heterogeneity in the adoption of photovoltaic systems in Flanders," Energy Economics, Elsevier, vol. 59(C), pages 45-57.
    16. Zhang, Sufang, 2016. "Analysis of DSPV (distributed solar PV) power policy in China," Energy, Elsevier, vol. 98(C), pages 92-100.
    17. Kim, Heetae & Park, Eunil & Kwon, Sang Jib & Ohm, Jay Y. & Chang, Hyun Joon, 2014. "An integrated adoption model of solar energy technologies in South Korea," Renewable Energy, Elsevier, vol. 66(C), pages 523-531.
    18. Wang, Xiaozhen & Zheng, Ying & Jiang, Zihao & Tao, Ziyang, 2021. "Influence mechanism of subsidy policy on household photovoltaic purchase intention under an urban-rural divide in China," Energy, Elsevier, vol. 220(C).
    19. He, Yongxiu & Pang, Yuexia & Li, Xinmin & Zhang, Minhui, 2018. "Dynamic subsidy model of photovoltaic distributed generation in China," Renewable Energy, Elsevier, vol. 118(C), pages 555-564.
    20. Lin, Boqiang & Li, Zheng, 2022. "Towards world's low carbon development: The role of clean energy," Applied Energy, Elsevier, vol. 307(C).
    21. Qadir, Saeed & Dosmagambet, Yergali, 2020. "CAREC energy corridor: Opportunities, challenges, and IMPACT of regional energy trade integration on carbon emissions and energy access," Energy Policy, Elsevier, vol. 147(C).
    22. Ali S. Alghamdi, 2021. "Performance Enhancement of Roof-Mounted Photovoltaic System: Artificial Neural Network Optimization of Ground Coverage Ratio," Energies, MDPI, vol. 14(6), pages 1-18, March.
    23. Abreu, Joana & Wingartz, Nathalie & Hardy, Natasha, 2019. "New trends in solar: A comparative study assessing the attitudes towards the adoption of rooftop PV," Energy Policy, Elsevier, vol. 128(C), pages 347-363.
    24. Jin Zhang & Lianrui Ma & Jinkai Li, 2021. "Why Low-Carbon Publicity Effect Limits? The Role of Heterogeneous Intention in Reducing Household Energy Consumption," Energies, MDPI, vol. 14(22), pages 1-17, November.
    25. Shigetomi, Yosuke & Matsumoto, Ken'ichi & Ogawa, Yuki & Shiraki, Hiroto & Yamamoto, Yuki & Ochi, Yuki & Ehara, Tomoki, 2018. "Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan," Applied Energy, Elsevier, vol. 228(C), pages 2321-2332.
    26. Lu, Qing & Yu, Hao & Zhao, Kangli & Leng, Yajun & Hou, Jianchao & Xie, Pinjie, 2019. "Residential demand response considering distributed PV consumption: A model based on China's PV policy," Energy, Elsevier, vol. 172(C), pages 443-456.
    27. dos Santos, L.L.C. & Canha, L.N. & Bernardon, D.P., 2018. "Projection of the diffusion of photovoltaic systems in residential low voltage consumers," Renewable Energy, Elsevier, vol. 116(PA), pages 384-401.
    28. Steg, Linda, 2008. "Promoting household energy conservation," Energy Policy, Elsevier, vol. 36(12), pages 4449-4453, December.
    29. Darja Topolšek & Dario Babić & Darko Babić & Tina Cvahte Ojsteršek, 2020. "Factors Influencing the Purchase Intention of Autonomous Cars," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    30. Gonçalves, Juliana E. & Montazeri, Hamid & van Hooff, Twan & Saelens, Dirk, 2021. "Performance of building integrated photovoltaic facades: Impact of exterior convective heat transfer," Applied Energy, Elsevier, vol. 287(C).
    31. Wustenhagen, Rolf & Bilharz, Michael, 2006. "Green energy market development in Germany: effective public policy and emerging customer demand," Energy Policy, Elsevier, vol. 34(13), pages 1681-1696, September.
    32. Yang, Ying & Campana, Pietro Elia & Stridh, Bengt & Yan, Jinyue, 2020. "Potential analysis of roof-mounted solar photovoltaics in Sweden," Applied Energy, Elsevier, vol. 279(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaozhen & Zheng, Ying & Jiang, Zihao & Tao, Ziyang, 2021. "Influence mechanism of subsidy policy on household photovoltaic purchase intention under an urban-rural divide in China," Energy, Elsevier, vol. 220(C).
    2. Song, Chenchen & Guo, Zhiling & Liu, Zhengguang & Hongyun, Zhang & Liu, Ran & Zhang, Haoran, 2024. "Application of photovoltaics on different types of land in China: Opportunities, status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. Liu, Diyi & Qi, Suntong & Xu, Tiantong, 2023. "In the post-subsidy era: How to encourage mere consumers to become prosumers when subsidy reduced?," Energy Policy, Elsevier, vol. 174(C).
    4. Alipour, M. & Salim, H. & Stewart, Rodney A. & Sahin, Oz, 2020. "Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    5. Xu, Xinkuo & Guan, Chengmei & Jin, Jiayu, 2018. "Valuing the carbon assets of distributed photovoltaic generation in China," Energy Policy, Elsevier, vol. 121(C), pages 374-382.
    6. Wichsinee Wibulpolprasert & Umnouy Ponsukcharoen & Siripha Junlakarn & Sopitsuda Tongsopit, 2021. "Preliminarily Screening Geographical Hotspots for New Rooftop PV Installation: A Case Study in Thailand," Energies, MDPI, vol. 14(11), pages 1-30, June.
    7. Felipe Moraes do Nascimento & Julio Cezar Mairesse Siluk & Fernando de Souza Savian & Taís Bisognin Garlet & José Renes Pinheiro & Carlos Ramos, 2020. "Factors for Measuring Photovoltaic Adoption from the Perspective of Operators," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    8. Kapsalis, Vasileios & Maduta, Carmen & Skandalos, Nikolaos & Wang, Meng & Bhuvad, Sushant Suresh & D'Agostino, Delia & Ma, Tao & Raj, Uday & Parker, Danny & Peng, Jinqing & Karamanis, Dimitris, 2024. "Critical assessment of large-scale rooftop photovoltaics deployment in the global urban environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    9. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    10. Fuquan Zhao & Feiqi Liu & Han Hao & Zongwei Liu, 2020. "Carbon Emission Reduction Strategy for Energy Users in China," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    11. Paul Simshauser & Tim Nelson & Joel Gilmore, 2022. "The sunshine state: implications from mass rooftop solar PV take-up rates in Queensland," Working Papers EPRG2219, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    12. Fabian Scheller & Isabel Doser & Emily Schulte & Simon Johanning & Russell McKenna & Thomas Bruckner, 2021. "Stakeholder dynamics in residential solar energy adoption: findings from focus group discussions in Germany," Papers 2104.14240, arXiv.org.
    13. Liu, Diyi & Zou, Hongyang & Qiu, Yueming & Du, Huibin, 2024. "Consumer reaction to green subsidy phase-out in China: Evidence from the household photovoltaic industry," Energy Economics, Elsevier, vol. 129(C).
    14. McRae, Shaun D. & Wolak, Frank A., 2021. "Retail pricing in Colombia to support the efficient deployment of distributed generation and electric stoves," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    15. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The post COVID-19 green recovery in practice: Assessing the profitability of a policy proposal on residential photovoltaic plants," Energy Policy, Elsevier, vol. 147(C).
    16. Hancevic, Pedro Ignacio & Lopez-Aguilar, Javier Alejandro, 2019. "Energy efficiency programs in the context of increasing block tariffs: The case of residential electricity in Mexico," Energy Policy, Elsevier, vol. 131(C), pages 320-331.
    17. Luo, Shunjun & Zhang, Shaohui, 2022. "How R&D expenditure intermediate as a new determinants for low carbon energy transition in Belt and Road Initiative economies," Renewable Energy, Elsevier, vol. 197(C), pages 101-109.
    18. Sarah A. Elariane & Jean Dubé, 2019. "Is Smart Housing a Good Deal? An Answer Based on Monte Carlo Net Present Value Analysis," Sustainability, MDPI, vol. 11(15), pages 1-29, August.
    19. Palm, A., 2020. "Early adopters and their motives: Differences between earlier and later adopters of residential solar photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Alipour, Mohammad & Taghikhah, Firouzeh & Irannezhad, Elnaz & Stewart, Rodney A. & Sahin, Oz, 2022. "How the decision to accept or reject PV affects the behaviour of residential battery system adopters," Applied Energy, Elsevier, vol. 318(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8659-:d:863344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.