Green Charging of Electric Vehicles Under a Net-Zero Emissions Policy Transition in California
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Freeman, Gerad M. & Drennen, Thomas E. & White, Andrew D., 2017. "Can parked cars and carbon taxes create a profit? The economics of vehicle-to-grid energy storage for peak reduction," Energy Policy, Elsevier, vol. 106(C), pages 183-190.
- Rahbari, Omid & Vafaeipour, Majid & Omar, Noshin & Rosen, Marc A. & Hegazy, Omar & Timmermans, Jean-Marc & Heibati, Seyedmohammadreza & Bossche, Peter Van Den, 2017. "An optimal versatile control approach for plug-in electric vehicles to integrate renewable energy sources and smart grids," Energy, Elsevier, vol. 134(C), pages 1053-1067.
- Thompson, Andrew W. & Perez, Yannick, 2020.
"Vehicle-to-Everything (V2X) energy services, value streams, and regulatory policy implications,"
Energy Policy, Elsevier, vol. 137(C).
- Andrew Thompson & Yannick Perez, 2020. "Vehicle-to-Everything (V2X) energy services, value streams, and regulatory policy implications," Post-Print halshs-02860026, HAL.
- Pia L. Kempker & Nico M. van Dijk & Werner Scheinhardt & Hans Berg & Johann Hurink, 2017. "Smart Charging of Electric Vehicles," International Series in Operations Research & Management Science, in: Richard J. Boucherie & Nico M. van Dijk (ed.), Markov Decision Processes in Practice, chapter 0, pages 387-404, Springer.
- Matteo Muratori, 2018. "Impact of uncoordinated plug-in electric vehicle charging on residential power demand," Nature Energy, Nature, vol. 3(3), pages 193-201, March.
- Sun, Zhuo & Gao, Wei & Li, Bin & Wang, Longlong, 2020. "Locating charging stations for electric vehicles," Transport Policy, Elsevier, vol. 98(C), pages 48-54.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jenn, Alan, 2023. "Emissions of electric vehicles in California’s transition to carbon neutrality," Applied Energy, Elsevier, vol. 339(C).
- David Borge-Diez & Pedro Miguel Ortega-Cabezas & Antonio Colmenar-Santos & Jorge Juan Blanes-Peiró, 2021. "Contribution of Driving Efficiency to Vehicle-to-Building," Energies, MDPI, vol. 14(12), pages 1-30, June.
- Greaker, Mads & Hagem, Cathrine & Proost, Stef, 2022. "An economic model of vehicle-to-grid: Impacts on the electricity market and consumer cost of electric vehicles," Resource and Energy Economics, Elsevier, vol. 69(C).
- Qiu, Yueming Lucy & Wang, Yi David & Iseki, Hiroyuki & Shen, Xingchi & Xing, Bo & Zhang, Huiming, 2022. "Empirical grid impact of in-home electric vehicle charging differs from predictions," Resource and Energy Economics, Elsevier, vol. 67(C).
- Gschwendtner, Christine & Sinsel, Simon R. & Stephan, Annegret, 2021. "Vehicle-to-X (V2X) implementation: An overview of predominate trial configurations and technical, social and regulatory challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Felipe Gonzalez & Marc Petit & Yannick Perez, 2021. "Plug-in behavior of electric vehicles users: Insights from a large-scale trial and impacts for grid integration studies," Post-Print hal-03363782, HAL.
- Mansur Arief & Yan Akhra & Iwan Vanany, 2023. "A Robust and Efficient Optimization Model for Electric Vehicle Charging Stations in Developing Countries under Electricity Uncertainty," Papers 2307.05470, arXiv.org.
- Francesco Lo Franco & Mattia Ricco & Riccardo Mandrioli & Gabriele Grandi, 2020. "Electric Vehicle Aggregate Power Flow Prediction and Smart Charging System for Distributed Renewable Energy Self-Consumption Optimization," Energies, MDPI, vol. 13(19), pages 1-25, September.
- Muhammad Ahsan Khan & Akhtar Hussain & Woon-Gyu Lee & Hak-Man Kim, 2023. "An Incentive-Based Mechanism to Enhance Energy Trading among Microgrids, EVs, and Grid," Energies, MDPI, vol. 16(17), pages 1-23, September.
- Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
- Siobhan Powell & Gustavo Vianna Cezar & Liang Min & Inês M. L. Azevedo & Ram Rajagopal, 2022. "Charging infrastructure access and operation to reduce the grid impacts of deep electric vehicle adoption," Nature Energy, Nature, vol. 7(10), pages 932-945, October.
- Lizana, Jesus & Friedrich, Daniel & Renaldi, Renaldi & Chacartegui, Ricardo, 2018. "Energy flexible building through smart demand-side management and latent heat storage," Applied Energy, Elsevier, vol. 230(C), pages 471-485.
- Yuping Lin & Kai Zhang & Zuo-Jun Max Shen & Lixin Miao, 2019. "Charging Network Planning for Electric Bus Cities: A Case Study of Shenzhen, China," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
- Stavros Lazarou & Vasiliki Vita & Christos Christodoulou & Lambros Ekonomou, 2018. "Calculating Operational Patterns for Electric Vehicle Charging on a Real Distribution Network Based on Renewables’ Production," Energies, MDPI, vol. 11(9), pages 1-15, September.
- Ahmadian, Amirhossein & Ghodrati, Vahid & Gadh, Rajit, 2023. "Artificial deep neural network enables one-size-fits-all electric vehicle user behavior prediction framework," Applied Energy, Elsevier, vol. 352(C).
- Aghajani, Saemeh & Kalantar, Mohsen, 2017. "Optimal scheduling of distributed energy resources in smart grids: A complementarity approach," Energy, Elsevier, vol. 141(C), pages 2135-2144.
- Kłos, Marcin Jacek & Sierpiński, Grzegorz, 2023. "Siting of electric vehicle charging stations method addressing area potential and increasing their accessibility," Journal of Transport Geography, Elsevier, vol. 109(C).
- Loris Di Natale & Luca Funk & Martin Rüdisüli & Bratislav Svetozarevic & Giacomo Pareschi & Philipp Heer & Giovanni Sansavini, 2021. "The Potential of Vehicle-to-Grid to Support the Energy Transition: A Case Study on Switzerland," Energies, MDPI, vol. 14(16), pages 1-24, August.
- Agbotiname Lucky Imoize & Hope Ikoghene Obakhena & Francis Ifeanyi Anyasi & Samarendra Nath Sur, 2022. "A Review of Energy Efficiency and Power Control Schemes in Ultra-Dense Cell-Free Massive MIMO Systems for Sustainable 6G Wireless Communication," Sustainability, MDPI, vol. 14(17), pages 1-38, September.
- Jia, Jun-Jun & Ni, Jinlan & Wei, Chu, 2023. "Residential responses to service-specific electricity demand: Case of China," China Economic Review, Elsevier, vol. 78(C).
More about this item
Keywords
Social and Behavioral Sciences; Decarbonization; electric grids; electric vehicles; electric vehicle charging; emissions; carbon dioxide; policy analysis;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ENE-2021-09-06 (Energy Economics)
- NEP-ENV-2021-09-06 (Environmental Economics)
- NEP-ISF-2021-09-06 (Islamic Finance)
- NEP-TRE-2021-09-06 (Transport Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt2rv3h345. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.