IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v69y2018icp213-224.html
   My bibliography  Save this article

The impact of an ETS on the Australian energy sector: An integrated CGE and electricity modelling approach

Author

Listed:
  • Meng, Sam
  • Siriwardana, Mahinda
  • McNeill, Judith
  • Nelson, Tim

Abstract

This paper utilises a new computable general equilibrium (CGE) model which integrates an electricity supply model to gauge the effects of a national emissions trading scheme (ETS) on the Australian energy sector and the broader economy. The modelling results show that an ETS can reduce emissions effectively and with a relatively small impact on the overall economy. But the impact of the ETS on individual sectors varies. Wind electricity generation is projected to benefit greatly. Brown coal electricity and gas electricity are expected to be adversely affected substantially. Somewhat surprisingly, the impact on black coal electricity is negative but relatively small.

Suggested Citation

  • Meng, Sam & Siriwardana, Mahinda & McNeill, Judith & Nelson, Tim, 2018. "The impact of an ETS on the Australian energy sector: An integrated CGE and electricity modelling approach," Energy Economics, Elsevier, vol. 69(C), pages 213-224.
  • Handle: RePEc:eee:eneeco:v:69:y:2018:i:c:p:213-224
    DOI: 10.1016/j.eneco.2017.11.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988317304097
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2017.11.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taesik Yun & Gyeong Lyeob Cho & Jang-Yeop Kim, 2016. "Analyzing Economic Effects with Energy Mix Changes: A Hybrid CGE Model Approach," Sustainability, MDPI, vol. 8(10), pages 1-18, October.
    2. Cornwell, Antonia & Creedy, John, 1997. "Measuring the Welfare Effects of Tax Changes Using the LES: An Application to a Carbon Tax," Empirical Economics, Springer, vol. 22(4), pages 589-613.
    3. Bohringer, Christoph & Hoffmann, Tim & Vogele, Stefan, 2002. "The cost of phasing out nuclear power:: a quantitative assessment of alternative scenarios for Germany," Energy Economics, Elsevier, vol. 24(5), pages 469-490, September.
    4. Papageorgiou, Chris & Saam, Marianne & Schulte, Patrick, 2013. "Elasticity of substitution between clean and dirty energy inputs: A macroeconomic perspective," ZEW Discussion Papers 13-087, ZEW - Leibniz Centre for European Economic Research.
    5. Sebastian Rausch & Valerie J. Karplus, 2014. "Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals," The Energy Journal, , vol. 35(1_suppl), pages 199-228, June.
    6. Ferris, Michael C. & Munson, Todd S., 2000. "Complementarity problems in GAMS and the PATH solver," Journal of Economic Dynamics and Control, Elsevier, vol. 24(2), pages 165-188, February.
    7. Sam Meng & Mahinda Siriwardana & Judith McNeill, 2013. "The Environmental and Economic Impact of the Carbon Tax in Australia," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(3), pages 313-332, March.
    8. Frei, Christoph W. & Haldi, Pierre-Andre & Sarlos, Gerard, 2003. "Dynamic formulation of a top-down and bottom-up merging energy policy model," Energy Policy, Elsevier, vol. 31(10), pages 1017-1031, August.
    9. Rutherford, Thomas F., 1995. "Extension of GAMS for complementarity problems arising in applied economic analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 19(8), pages 1299-1324, November.
    10. repec:bla:ausecr:v:40:y:2007:i:4:p:432-452 is not listed on IDEAS
    11. Harry Clarke & Iain Fraser & Robert George Waschik, 2014. "How Much Abatement Will Australia's Emissions Reduction Fund Buy?," Economic Papers, The Economic Society of Australia, vol. 33(4), pages 315-326, December.
    12. Zhongxiang Zhang, 1998. "Macro-economic and Sectoral Effects of Carbon Taxes: A General Equilibrium Analysis for China," Economic Systems Research, Taylor & Francis Journals, vol. 10(2), pages 135-159.
    13. Philip D. Adams & Brian R. Parmenter & George Verikios, 2014. "An Emissions Trading Scheme for Australia: National and Regional Impacts," The Economic Record, The Economic Society of Australia, vol. 90(290), pages 316-344, September.
    14. Ha, Soo Jung & Lange, Ian & Lecca, Patrizio & Turner, Karen, 2012. "Econometric estimation of nested production functions and testing in a computable general equilibrium analysis of economy-wide rebound effec ts," Stirling Economics Discussion Papers 2012-08, University of Stirling, Division of Economics.
    15. M. Seetharama Gowda & Jong-Shi Pang, 1992. "On Solution Stability of the Linear Complementarity Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 77-83, February.
    16. Devarajan Shantayanan & Go Delfin S & Robinson Sherman & Thierfelder Karen, 2011. "Tax Policy to Reduce Carbon Emissions in a Distorted Economy: Illustrations from a South Africa CGE Model," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 11(1), pages 1-24, February.
    17. Valeria Costantini & Elena Paglialunga, 2014. "Elasticity of substitution in capital-energy relationships: how central is a sector-based panel estimation approach?," SEEDS Working Papers 1314, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised May 2014.
    18. Wissema, Wiepke & Dellink, Rob, 2007. "AGE analysis of the impact of a carbon energy tax on the Irish economy," Ecological Economics, Elsevier, vol. 61(4), pages 671-683, March.
    19. Christoph Böhringer & Andreas Löschel, 2006. "Promoting Renewable Energy in Europe: A Hybrid Computable General Equilibrium Approach," The Energy Journal, , vol. 27(2_suppl), pages 135-150, June.
    20. Jean Charles Hourcade & Mark Jaccard & Chris Bataille & Frédéric Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges," Post-Print halshs-00471234, HAL.
    21. Kirk Hamilton & Grant Cameron, 1994. "Simulating the Distributional Effects of a Canadian Carbon Tax," Canadian Public Policy, University of Toronto Press, vol. 20(4), pages 385-399, December.
    22. Harry Clarke & Robert Waschik, 2012. "Australia's Carbon Pricing Strategies in a Global Context," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 22-37, June.
    23. Mark Horridge, 2000. "ORANI-G: A General Equilibrium Model of the Australian Economy," Centre of Policy Studies/IMPACT Centre Working Papers op-93, Victoria University, Centre of Policy Studies/IMPACT Centre.
    24. van der Werf, Edwin, 2008. "Production functions for climate policy modeling: An empirical analysis," Energy Economics, Elsevier, vol. 30(6), pages 2964-2979, November.
    25. Koschel, Henrike, 2000. "Substitution elasticities between capital, labour, material, electricity and fossil fuels in German producing and service sectors," ZEW Discussion Papers 00-31, ZEW - Leibniz Centre for European Economic Research.
    26. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
    27. Paul Simshauser & Thao Doan, 2009. "Emissions Trading, Wealth Transfers and the Wounded Bull Scenario in Power Generation," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 42(1), pages 64-83, March.
    28. Rausch, Sebastian & Mowers, Matthew, 2014. "Distributional and efficiency impacts of clean and renewable energy standards for electricity," Resource and Energy Economics, Elsevier, vol. 36(2), pages 556-585.
    29. Böhringer, Christoph & Rutherford, Thomos F., 2009. "Integrated assessment of energy policies: Decomposing top-down and bottom-up," Journal of Economic Dynamics and Control, Elsevier, vol. 33(9), pages 1648-1661, September.
    30. Bohringer, Christoph, 1998. "The synthesis of bottom-up and top-down in energy policy modeling," Energy Economics, Elsevier, vol. 20(3), pages 233-248, June.
    31. Jean-Charles Hourcade, Mark Jaccard, Chris Bataille, and Frederic Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges Introduction to the Special Issue of The Energy Journal," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-12.
    32. Lucas Bretschger & Lin Zhang & Roger Ramer, 2012. "Economic effects of a nuclear-phase out policy: A CGE analysis," CER-ETH Economics working paper series 12/167, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    33. Samuel Meng, 2015. "Is the agricultural industry spared from the influence of the Australian carbon tax?," Agricultural Economics, International Association of Agricultural Economists, vol. 46(1), pages 125-137, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nong, Duy & Nguyen, Duong Binh & Nguyen, Trung H. & Wang, Can & Siriwardana, Mahinda, 2020. "A stronger energy strategy for a new era of economic development in Vietnam: A quantitative assessment," Energy Policy, Elsevier, vol. 144(C).
    2. Su, Q. & Zhou, P. & Ding, H. & Xydis, G., 2024. "Transition towards a hybrid energy system: Combined effects of renewable portfolio standards and carbon emission trading," Energy Economics, Elsevier, vol. 135(C).
    3. Pan, Yuling & Dong, Feng, 2023. "Green finance policy coupling effect of fossil energy use rights trading and renewable energy certificates trading on low carbon economy: Taking China as an example," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 658-679.
    4. Suleman, Muhammad Tahir & Rehman, Mobeen Ur & Sheikh, Umaid A. & Kang, Sang Hoon, 2023. "Dynamic time-frequency connectedness between European emissions trading system and sustainability markets," Energy Economics, Elsevier, vol. 123(C).
    5. Huang, Rui & Chen, Guangwu & Lv, Guonian & Malik, Arunima & Shi, Xunpeng & Xie, Xiaotian, 2020. "The effect of technology spillover on CO2 emissions embodied in China-Australia trade," Energy Policy, Elsevier, vol. 144(C).
    6. Zhang, Dongyu & Liu, Gengyuan & Chen, Caocao & Zhang, Yan & Hao, Yan & Casazza, Marco, 2019. "Medium-to-long-term coupled strategies for energy efficiency and greenhouse gas emissions reduction in Beijing (China)," Energy Policy, Elsevier, vol. 127(C), pages 350-360.
    7. Luo, Bin & Huang, Guohe & Chen, Leian & Liu, Lirong & Zhao, Kai, 2024. "Factorial optimization-driven input-output analysis for socio-economic and environmental effects of GHG emission reduction in electric power systems – A Canadian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Mardones, Cristian & Ortega, José, 2021. "Are the emissions trading systems’ simulations generated with a computable general equilibrium model sensitive to the nested production structure?," Applied Energy, Elsevier, vol. 298(C).
    9. Zhang, Hongyu & Zhang, Da & Guo, Siyue & Zhang, Xiliang, 2024. "Impact of benchmark tightening design under output-based ETS on China's power sector," Energy, Elsevier, vol. 288(C).
    10. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    11. Tang, Ling & Wang, Haohan & Li, Ling & Yang, Kaitong & Mi, Zhifu, 2020. "Quantitative models in emission trading system research: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    12. Siriwardana, Mahinda & Nong, Duy, 2021. "Nationally Determined Contributions (NDCs) to decarbonise the world: A transitional impact evaluation," Energy Economics, Elsevier, vol. 97(C).
    13. Ru Li & Sigit Perdana & Marc Vielle, 2021. "Potential integration of Chinese and European emissions trading market: welfare distribution analysis," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(5), pages 1-28, June.
    14. Nong, Duy & Nguyen, Trung H. & Wang, Can & Van Khuc, Quy, 2020. "The environmental and economic impact of the emissions trading scheme (ETS) in Vietnam," Energy Policy, Elsevier, vol. 140(C).
    15. Bissiri, M. & Moura, P. & Figueiredo, N.C. & Silva, P.P., 2020. "Towards a renewables-based future for West African States: A review of power systems planning approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Tan, Xiujie & Wang, Banban & Wei, Jie & Taghizadeh-Hesary, Farhad, 2023. "The role of carbon pricing in achieving energy transition in the Post-COP26 era: Evidence from China's industrial energy conservation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    17. Huang, Jing & Han, Wenjing & Zhang, Zhengfeng & Ning, Shanshan & Zhang, Xiaoling, 2024. "The decoupling relationship between land use efficiency and carbon emissions in China: An analysis using the Socio-Ecological Systems (SES) framework," Land Use Policy, Elsevier, vol. 138(C).
    18. Xin-gang, Zhao & Shuran, Hu & Hui, Wang & Haowei, Chen & Wenbin, Zhang & Wenjie, Lu, 2024. "Energy, economic, and environmental impacts of electricity market-oriented reform and the carbon emissions trading: A recursive dynamic CGE model in China," Energy, Elsevier, vol. 298(C).
    19. Koasidis, Konstantinos & Marinakis, Vangelis & Nikas, Alexandros & Chira, Katerina & Flamos, Alexandros & Doukas, Haris, 2022. "Monetising behavioural change as a policy measure to support energy management in the residential sector: A case study in Greece," Energy Policy, Elsevier, vol. 161(C).
    20. Hu, Yucai & Ren, Shenggang & Wang, Yangjie & Chen, Xiaohong, 2020. "Can carbon emission trading scheme achieve energy conservation and emission reduction? Evidence from the industrial sector in China," Energy Economics, Elsevier, vol. 85(C).
    21. Di Zhou & Xiaoyu Liang & Ye Zhou & Kai Tang, 2020. "Does Emission Trading Boost Carbon Productivity? Evidence from China’s Pilot Emission Trading Scheme," IJERPH, MDPI, vol. 17(15), pages 1-16, July.
    22. Songyan Ren & Peng Wang & Zewei Lin & Daiqing Zhao, 2022. "The Policy Choice and Economic Assessment of High Emissions Industries to Achieve the Carbon Peak Target under Energy Shortage—A Case Study of Guangdong Province," Energies, MDPI, vol. 15(18), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Xianming & Siriwardana, Mahinda & McNeill, Judith, 2015. "Will the direct action plan work?," Conference papers 332602, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    2. Martin T. Ross, Patrick T. Sullivan, Allen A. Fawcett, and Brooks M. Depro, 2014. "Investigating Technology Options for Climate Policies: Differentiated Roles in ADAGE," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    3. Sebastian Rausch & Valerie J. Karplus, 2014. "Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals," The Energy Journal, , vol. 35(1_suppl), pages 199-228, June.
    4. Sam Meng & Tien Pham, 2017. "The impact of the Australian carbon tax on the tourism industry," Tourism Economics, , vol. 23(3), pages 506-522, May.
    5. Sam Meng & Mahinda Siriwardana & Judith McNeill, 2013. "The Environmental and Economic Impact of the Carbon Tax in Australia," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(3), pages 313-332, March.
    6. Samuel Meng, 2015. "Is the agricultural industry spared from the influence of the Australian carbon tax?," Agricultural Economics, International Association of Agricultural Economists, vol. 46(1), pages 125-137, January.
    7. Abrell, Jan & Rausch, Sebastian, 2016. "Cross-country electricity trade, renewable energy and European transmission infrastructure policy," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 87-113.
    8. Rausch, Sebastian & Mowers, Matthew, 2014. "Distributional and efficiency impacts of clean and renewable energy standards for electricity," Resource and Energy Economics, Elsevier, vol. 36(2), pages 556-585.
    9. Helgesen, Per Ivar & Tomasgard, Asgeir, 2018. "From linking to integration of energy system models and computational general equilibrium models – Effects on equilibria and convergence," Energy, Elsevier, vol. 159(C), pages 1218-1233.
    10. Beltrán, Allan & Alatorre, José Eduardo & Ferrer, Jimy & Galindo, Luis Miguel, 2017. "Efectos potenciales de un impuesto al carbono sobre el producto interno bruto en los países de América Latina: estimaciones preliminares e hipotéticas a partir de un metaanálisis y una función de tran," Documentos de Proyectos 41867, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    11. Fortes, Patrícia & Pereira, Rui & Pereira, Alfredo & Seixas, Júlia, 2014. "Integrated technological-economic modeling platform for energy and climate policy analysis," Energy, Elsevier, vol. 73(C), pages 716-730.
    12. Mier, Mathias & Siala, Kais & Govorukha, Kristina & Mayer, Philip, 2023. "Collaboration, decarbonization, and distributional effects," Applied Energy, Elsevier, vol. 341(C).
    13. Sam Meng & Mahinda Siriwardana & Judith McNeill, 2014. "The Impact of the Australian Carbon Tax on Industries and Households," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 8(1), pages 15-37, February.
    14. Milad Maralani & Milad Maralani & Basil Sharp & Golbon Zakeri, 2016. "The Potential Impact of Industrial Energy Savings on The New Zealand Economy," EcoMod2016 9308, EcoMod.
    15. Lanz, Bruno & Rausch, Sebastian, 2011. "General equilibrium, electricity generation technologies and the cost of carbon abatement: A structural sensitivity analysis," Energy Economics, Elsevier, vol. 33(5), pages 1035-1047, September.
    16. Theodoridou, Ifigeneia & Papadopoulos, Agis M. & Hegger, Manfred, 2012. "A feasibility evaluation tool for sustainable cities – A case study for Greece," Energy Policy, Elsevier, vol. 44(C), pages 207-216.
    17. Masoud Yahoo & Jamal Othman, 2017. "Carbon and energy taxation for CO2 mitigation: a CGE model of the Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(1), pages 239-262, February.
    18. Mahinda Siriwardana & Sam Meng & Judith McNeill, 2017. "Border adjustments under unilateral carbon pricing: the case of Australian carbon tax," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-21, December.
    19. Andersen, Kristoffer S. & Termansen, Lars B. & Gargiulo, Maurizio & Ó Gallachóirc, Brian P., 2019. "Bridging the gap using energy services: Demonstrating a novel framework for soft linking top-down and bottom-up models," Energy, Elsevier, vol. 169(C), pages 277-293.
    20. Nong, Duy & Meng, Sam & Siriwardana, Mahinda, 2017. "An assessment of a proposed ETS in Australia by using the MONASH-Green model," Energy Policy, Elsevier, vol. 108(C), pages 281-291.

    More about this item

    Keywords

    Carbon pricing; CGE modelling; Energy resources; Carbon emission;
    All these keywords.

    JEL classification:

    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:69:y:2018:i:c:p:213-224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.