IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v320y2025i1p219-238.html
   My bibliography  Save this article

Managing oversaturation in BRT corridors: A new approach of timetabling for resilience enhancement using a tailored integer L-shaped algorithm

Author

Listed:
  • Wang, Yiran
  • Mo, Pengli
  • Chen, Jingxu
  • Liu, Zhiyuan

Abstract

Bus rapid transit (BRT) is a high-capacity public transport system that typically operates along urban transit corridors with dense travel demand. Maintaining the efficiency and stability of the BRT is paramount for daily transport operations. Owing to the difficulty in ensuring an exclusive right-of-way along the entire route, stochastic congestion events may occur resulting from road segments without dedicated BRT lanes. This may lead to volatility in travel time and resulting in passenger stranding, determined as common-case disruptions in this study. These common-case disruptions frequently occur in the daily operation of oversaturated BRT routes. To manage and mitigate their negative impacts, a novel timetabling problem for enhancing the resilience of a BRT system was proposed to assess the ability of the system to withstand and recover from these disruptions. We formulated the problem as a two-stage stochastic mixed-integer optimization model and designed an exact algorithm based on a tailored integer L-shaped method. We then analyzed the structural properties of our model and developed several acceleration techniques to further improve the efficiency of the algorithm. The computational results show that the proposed algorithm outperforms the commercial solver in large-scale instances and can provide near-optimal solutions when the commercial solver is invalid. Besides, external comparisons with dynamic programming also demonstrate the superiority of the proposed algorithm in solution efficiency. Compared with the benchmark timetabling problem, which aims to reduce passenger waiting time, the proposed method can efficiently reduce the duration of the oversaturation period by 35.3%.

Suggested Citation

  • Wang, Yiran & Mo, Pengli & Chen, Jingxu & Liu, Zhiyuan, 2025. "Managing oversaturation in BRT corridors: A new approach of timetabling for resilience enhancement using a tailored integer L-shaped algorithm," European Journal of Operational Research, Elsevier, vol. 320(1), pages 219-238.
  • Handle: RePEc:eee:ejores:v:320:y:2025:i:1:p:219-238
    DOI: 10.1016/j.ejor.2024.07.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724005964
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.07.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:320:y:2025:i:1:p:219-238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.