IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v320y2025i1p219-238.html
   My bibliography  Save this article

Managing oversaturation in BRT corridors: A new approach of timetabling for resilience enhancement using a tailored integer L-shaped algorithm

Author

Listed:
  • Wang, Yiran
  • Mo, Pengli
  • Chen, Jingxu
  • Liu, Zhiyuan

Abstract

Bus rapid transit (BRT) is a high-capacity public transport system that typically operates along urban transit corridors with dense travel demand. Maintaining the efficiency and stability of the BRT is paramount for daily transport operations. Owing to the difficulty in ensuring an exclusive right-of-way along the entire route, stochastic congestion events may occur resulting from road segments without dedicated BRT lanes. This may lead to volatility in travel time and resulting in passenger stranding, determined as common-case disruptions in this study. These common-case disruptions frequently occur in the daily operation of oversaturated BRT routes. To manage and mitigate their negative impacts, a novel timetabling problem for enhancing the resilience of a BRT system was proposed to assess the ability of the system to withstand and recover from these disruptions. We formulated the problem as a two-stage stochastic mixed-integer optimization model and designed an exact algorithm based on a tailored integer L-shaped method. We then analyzed the structural properties of our model and developed several acceleration techniques to further improve the efficiency of the algorithm. The computational results show that the proposed algorithm outperforms the commercial solver in large-scale instances and can provide near-optimal solutions when the commercial solver is invalid. Besides, external comparisons with dynamic programming also demonstrate the superiority of the proposed algorithm in solution efficiency. Compared with the benchmark timetabling problem, which aims to reduce passenger waiting time, the proposed method can efficiently reduce the duration of the oversaturation period by 35.3%.

Suggested Citation

  • Wang, Yiran & Mo, Pengli & Chen, Jingxu & Liu, Zhiyuan, 2025. "Managing oversaturation in BRT corridors: A new approach of timetabling for resilience enhancement using a tailored integer L-shaped algorithm," European Journal of Operational Research, Elsevier, vol. 320(1), pages 219-238.
  • Handle: RePEc:eee:ejores:v:320:y:2025:i:1:p:219-238
    DOI: 10.1016/j.ejor.2024.07.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724005964
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.07.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Jungang & Yang, Lixing & Yang, Jing & Gao, Ziyou, 2018. "Service-oriented train timetabling with collaborative passenger flow control on an oversaturated metro line: An integer linear optimization approach," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 26-59.
    2. Liudan Jiao & Yinghan Zhu & Xiaosen Huo & Ya Wu & Yu Zhang, 2023. "Resilience assessment of metro stations against rainstorm disaster based on cloud model: a case study in Chongqing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2311-2337, March.
    3. Liu, Renming & Li, Shukai & Yang, Lixing, 2020. "Collaborative optimization for metro train scheduling and train connections combined with passenger flow control strategy," Omega, Elsevier, vol. 90(C).
    4. Pan, Hanchuan & Yang, Lixing & Liang, Zhe, 2023. "Demand-oriented integration optimization of train timetabling and rolling stock circulation planning with flexible train compositions: A column-generation-based approach," European Journal of Operational Research, Elsevier, vol. 305(1), pages 184-206.
    5. Pan, Hanchuan & Yang, Lixing & Liang, Zhe & Yang, Hai, 2024. "New Exact Algorithm for the integrated train timetabling and rolling stock circulation planning problem with stochastic demand," European Journal of Operational Research, Elsevier, vol. 316(3), pages 906-929.
    6. Arthur Mahéo & Philip Kilby & Pascal Van Hentenryck, 2019. "Benders Decomposition for the Design of a Hub and Shuttle Public Transit System," Service Science, INFORMS, vol. 53(1), pages 77-88, February.
    7. Niu, Huimin & Zhou, Xuesong & Gao, Ruhu, 2015. "Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop patterns: Nonlinear integer programming models with linear constraints," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 117-135.
    8. Yin, Jiateng & D’Ariano, Andrea & Wang, Yihui & Yang, Lixing & Tang, Tao, 2021. "Timetable coordination in a rail transit network with time-dependent passenger demand," European Journal of Operational Research, Elsevier, vol. 295(1), pages 183-202.
    9. Wang, Hongyang & Yang, Lixing & Zhang, Jinlei & Luo, Qin & Fan, Zhongsheng, 2024. "Real-time train timetabling with virtual coupling operations on a Y-type metro line," European Journal of Operational Research, Elsevier, vol. 319(1), pages 168-190.
    10. Sadrani, Mohammad & Tirachini, Alejandro & Antoniou, Constantinos, 2022. "Vehicle dispatching plan for minimizing passenger waiting time in a corridor with buses of different sizes: Model formulation and solution approaches," European Journal of Operational Research, Elsevier, vol. 299(1), pages 263-282.
    11. Jiateng Yin & Lixing Yang & Andrea D’Ariano & Tao Tang & Ziyou Gao, 2022. "Integrated Backup Rolling Stock Allocation and Timetable Rescheduling with Uncertain Time-Variant Passenger Demand Under Disruptive Events," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3234-3258, November.
    12. Scheepmaker, Gerben M. & Goverde, Rob M.P. & Kroon, Leo G., 2017. "Review of energy-efficient train control and timetabling," European Journal of Operational Research, Elsevier, vol. 257(2), pages 355-376.
    13. Xu, Zizhen & Chopra, Shauhrat S., 2022. "Network-based Assessment of Metro Infrastructure with a Spatial–temporal Resilience Cycle Framework," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    14. B. Berche & C. von Ferber & T. Holovatch & Yu. Holovatch, 2009. "Resilience of public transport networks against attacks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(1), pages 125-137, September.
    15. Yu Yuan & Pengcheng Wang & Minghui Wang & Amandeep Kaur, 2022. "Multi-Objective Stochastic Synchronous Timetable Optimization Model Based on a Chance-Constrained Programming Method Combined with Augmented Epsilon Constraint Algorithm," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-18, August.
    16. Chu, James C., 2018. "Mixed-integer programming model and branch-and-price-and-cut algorithm for urban bus network design and timetabling," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 188-216.
    17. D’Lima, Minette & Medda, Francesca, 2015. "A new measure of resilience: An application to the London Underground," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 35-46.
    18. Deng, Taotao & Nelson, John D., 2013. "Bus Rapid Transit implementation in Beijing: An evaluation of performance and impacts," Research in Transportation Economics, Elsevier, vol. 39(1), pages 108-113.
    19. Birge, John R. & Louveaux, Francois V., 1988. "A multicut algorithm for two-stage stochastic linear programs," European Journal of Operational Research, Elsevier, vol. 34(3), pages 384-392, March.
    20. Chen, Jinqu & Liu, Jie & Peng, Qiyuan & Yin, Yong, 2022. "Resilience assessment of an urban rail transit network: A case study of Chengdu subway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    21. Jin, Jian Gang & Tang, Loon Ching & Sun, Lijun & Lee, Der-Horng, 2014. "Enhancing metro network resilience via localized integration with bus services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 63(C), pages 17-30.
    22. Denise D. Tönissen & Joachim J. Arts & Zuo-Jun (Max) Shen, 2019. "Maintenance Location Routing for Rolling Stock Under Line and Fleet Planning Uncertainty," Transportation Science, INFORMS, vol. 53(5), pages 1252-1270, September.
    23. Li, Jin-Yang & Teng, Jing & Wang, Hui, 2024. "Measuring route diversity in spatial and spatial-temporal public transport networks," Transport Policy, Elsevier, vol. 146(C), pages 42-58.
    24. Xu, Peng-Cheng & Lu, Qing-Chang & Xie, Chi & Cheong, Taesu, 2024. "Modeling the resilience of interdependent networks: The role of function dependency in metro and bus systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    25. Yin, Jiateng & Pu, Fan & Yang, Lixing & D’Ariano, Andrea & Wang, Zhouhong, 2023. "Integrated optimization of rolling stock allocation and train timetables for urban rail transit networks: A benders decomposition approach," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    26. J. Benders, 2005. "Partitioning procedures for solving mixed-variables programming problems," Computational Management Science, Springer, vol. 2(1), pages 3-19, January.
    27. Gkiotsalitis, K. & Alesiani, F., 2019. "Robust timetable optimization for bus lines subject to resource and regulatory constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 30-51.
    28. Milan Janić, 2018. "Modelling the resilience of rail passenger transport networks affected by large-scale disruptive events: the case of HSR (high speed rail)," Transportation, Springer, vol. 45(4), pages 1101-1137, July.
    29. Gustavo Angulo & Shabbir Ahmed & Santanu S. Dey, 2016. "Improving the Integer L-Shaped Method," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 483-499, August.
    30. Bartholdi, John J. & Eisenstein, Donald D., 2012. "A self-coördinating bus route to resist bus bunching," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 481-491.
    31. Lian, Deheng & Mo, Pengli & D’Ariano, Andrea & Gao, Ziyou & Yang, Lixing, 2024. "Energy-saving time allocation strategy with uncertain dwell times in urban rail transit: Two-stage stochastic model and nested dynamic programming framework," European Journal of Operational Research, Elsevier, vol. 317(1), pages 219-242.
    32. João Paiva Fonseca & Tobias Zündorf & Evelien van der Hurk & Yongqiu Zhu & Allan Larsen, 2022. "A matheuristic for passenger service optimization through timetabling with free passenger route choice," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1087-1129, December.
    33. Yin, Jiateng & Ren, Xianliang & Liu, Ronghui & Tang, Tao & Su, Shuai, 2022. "Quantitative analysis for resilience-based urban rail systems: A hybrid knowledge-based and data-driven approach," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Hongyang & Yang, Lixing & Zhang, Jinlei & Luo, Qin & Fan, Zhongsheng, 2024. "Real-time train timetabling with virtual coupling operations on a Y-type metro line," European Journal of Operational Research, Elsevier, vol. 319(1), pages 168-190.
    2. Chai, Simin & Yin, Jiateng & D’Ariano, Andrea & Liu, Ronghui & Yang, Lixing & Tang, Tao, 2024. "A branch-and-cut algorithm for scheduling train platoons in urban rail networks," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    3. Yin, Jiateng & Wang, Miao & D’Ariano, Andrea & Zhang, Jinlei & Yang, Lixing, 2023. "Synchronization of train timetables in an urban rail network: A bi-objective optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    4. Xu, Peng-Cheng & Lu, Qing-Chang & Feng, Tao & Li, Jing & Li, Gen & Xu, Xin, 2024. "Resilience analysis of metro stations integrating infrastructures and passengers," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    5. Ali Shahabi & Sadigh Raissi & Kaveh Khalili-Damghani & Meysam Rafei, 2021. "Designing a resilient skip-stop schedule in rapid rail transit using a simulation-based optimization methodology," Operational Research, Springer, vol. 21(3), pages 1691-1721, September.
    6. Liang, Jinpeng & Zang, Guangzhi & Liu, Haitao & Zheng, Jianfeng & Gao, Ziyou, 2023. "Reducing passenger waiting time in oversaturated metro lines with passenger flow control policy," Omega, Elsevier, vol. 117(C).
    7. Jiateng Yin & Lixing Yang & Andrea D’Ariano & Tao Tang & Ziyou Gao, 2022. "Integrated Backup Rolling Stock Allocation and Timetable Rescheduling with Uncertain Time-Variant Passenger Demand Under Disruptive Events," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3234-3258, November.
    8. Yin, Jiateng & Pu, Fan & Yang, Lixing & D’Ariano, Andrea & Wang, Zhouhong, 2023. "Integrated optimization of rolling stock allocation and train timetables for urban rail transit networks: A benders decomposition approach," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    9. Zhang, Ping & Sun, Huijun & Qu, Yunchao & Yin, Haodong & Jin, Jian Gang & Wu, Jianjun, 2021. "Model and algorithm of coordinated flow controlling with station-based constraints in a metro system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    10. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    11. Knoester, Max J. & Bešinović, Nikola & Afghari, Amir Pooyan & Goverde, Rob M.P. & van Egmond, Jochen, 2024. "A data-driven approach for quantifying the resilience of railway networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    12. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    13. Yuan, Jiawei & Gao, Yuan & Li, Shukai & Liu, Pei & Yang, Lixing, 2022. "Integrated optimization of train timetable, rolling stock assignment and short-turning strategy for a metro line," European Journal of Operational Research, Elsevier, vol. 301(3), pages 855-874.
    14. Ma, Zhiao & Yang, Xin & Wu, Jianjun & Chen, Anthony & Wei, Yun & Gao, Ziyou, 2022. "Measuring the resilience of an urban rail transit network: A multi-dimensional evaluation model," Transport Policy, Elsevier, vol. 129(C), pages 38-50.
    15. Shi, Jungang & Yang, Jing & Yang, Lixing & Tao, Lefeng & Qiang, Shengjie & Di, Zhen & Guo, Junhua, 2023. "Safety-oriented train timetabling and stop planning with time-varying and elastic demand on overcrowded commuter metro lines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    16. Gkiotsalitis, K. & Cats, O. & Liu, T. & Bult, J.M., 2023. "An exact optimization method for coordinating the arrival times of urban rail lines at a common corridor," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 178(C).
    17. Xue, Hongjiao & Jia, Limin & Li, Jian & Guo, Jianyuan, 2022. "Jointly optimized demand-oriented train timetable and passenger flow control strategy for a congested subway line under a short-turning operation pattern," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    18. Bešinović, Nikola & Ferrari Nassar, Raphael & Szymula, Christopher, 2022. "Resilience assessment of railway networks: Combining infrastructure restoration and transport management," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    19. Zhuo, Siyu & Zhu, Xiaoning & Shang, Pan & Liu, Zhengke & Yao, Yu & Liao, Feixiong, 2024. "Behavior-Adaptive Sync-Flow Framework: Integrating frequency setting and passenger routing in oversaturated urban rail transit networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
    20. Yang, Lin & Gao, Yuan & D’Ariano, Andrea & Xu, Suxiu, 2024. "Integrated optimization of train timetable and train unit circulation for a Y-type urban rail transit system with flexible train composition mode," Omega, Elsevier, vol. 122(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:320:y:2025:i:1:p:219-238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.