IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v317y2024i1p219-242.html
   My bibliography  Save this article

Energy-saving time allocation strategy with uncertain dwell times in urban rail transit: Two-stage stochastic model and nested dynamic programming framework

Author

Listed:
  • Lian, Deheng
  • Mo, Pengli
  • D’Ariano, Andrea
  • Gao, Ziyou
  • Yang, Lixing

Abstract

During practical operations, the urban rail transit system suffers from various uncertainties, particularly uncertain dwell times, which significantly impact the execution of the timetable and affect its performance, regarding train energy consumption and timetable stability. Using multi-scenario dwell times to capture its uncertainty, in this study, a two-stage chance-constrained stochastic model involving a section-time allocation stage and an optimal driving strategy stage is developed to minimize the expected energy consumption and improve stability. An exact nested dynamic programming (NDP) framework was designed to solve the model. The effectiveness and performance of the proposed methodology were investigated using a series of numerical experiments based on a small-scale instance from the Beijing Yizhuang Line. The optimized section-time allocation strategy reduced the expected energy consumption by 6.6% and improved the the minimum stability ratio by 8.5% by selecting the appropriate weight ratio. Four other sensitivity analyses were conducted to provide realistic managerial insights. Finally, a large-scale study of the Beijing 4-Daxing Subway Line was conducted to validate the scalability and efficiency of the NDP framework.

Suggested Citation

  • Lian, Deheng & Mo, Pengli & D’Ariano, Andrea & Gao, Ziyou & Yang, Lixing, 2024. "Energy-saving time allocation strategy with uncertain dwell times in urban rail transit: Two-stage stochastic model and nested dynamic programming framework," European Journal of Operational Research, Elsevier, vol. 317(1), pages 219-242.
  • Handle: RePEc:eee:ejores:v:317:y:2024:i:1:p:219-242
    DOI: 10.1016/j.ejor.2024.03.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724001899
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.03.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Zhenyu & Han, Baoming & Li, Dewei & Ning, Shangbin & Yang, Ruixia & Yin, Yonghao, 2021. "Train timetabling in rail transit network under uncertain and dynamic demand using Advanced and Adaptive NSGA-II," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 65-99.
    2. Wang, Pengling & Goverde, Rob M.P., 2019. "Multi-train trajectory optimization for energy-efficient timetabling," European Journal of Operational Research, Elsevier, vol. 272(2), pages 621-635.
    3. Luan, Xiaojie & Wang, Yihui & De Schutter, Bart & Meng, Lingyun & Lodewijks, Gabriel & Corman, Francesco, 2018. "Integration of real-time traffic management and train control for rail networks - Part 1: Optimization problems and solution approaches," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 41-71.
    4. Wang, Pengling & Goverde, Rob M.P., 2017. "Multi-train trajectory optimization for energy efficiency and delay recovery on single-track railway lines," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 340-361.
    5. Ghoseiri, Keivan & Szidarovszky, Ferenc & Asgharpour, Mohammad Jawad, 2004. "A multi-objective train scheduling model and solution," Transportation Research Part B: Methodological, Elsevier, vol. 38(10), pages 927-952, December.
    6. Cacchiani, Valentina & Qi, Jianguo & Yang, Lixing, 2020. "Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 1-29.
    7. Kroon, Leo & Maróti, Gábor & Helmrich, Mathijn Retel & Vromans, Michiel & Dekker, Rommert, 2008. "Stochastic improvement of cyclic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 553-570, July.
    8. Gardner, Clara Brimnes & Nielsen, Sara Dorthea & Eltved, Morten & Rasmussen, Thomas Kjær & Nielsen, Otto Anker & Nielsen, Bo Friis, 2021. "Calculating conditional passenger travel time distributions in mixed schedule- and frequency-based public transport networks using Markov chains," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 1-17.
    9. Dudzinski, Krzysztof & Walukiewicz, Stanislaw, 1987. "Exact methods for the knapsack problem and its generalizations," European Journal of Operational Research, Elsevier, vol. 28(1), pages 3-21, January.
    10. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2016. "The key principles of optimal train control—Part 2: Existence of an optimal strategy, the local energy minimization principle, uniqueness, computational techniques," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 509-538.
    11. Cowling, Peter & Johansson, Marcus, 2002. "Using real time information for effective dynamic scheduling," European Journal of Operational Research, Elsevier, vol. 139(2), pages 230-244, June.
    12. Yin, Jiateng & D’Ariano, Andrea & Wang, Yihui & Yang, Lixing & Tang, Tao, 2021. "Timetable coordination in a rail transit network with time-dependent passenger demand," European Journal of Operational Research, Elsevier, vol. 295(1), pages 183-202.
    13. Wang, Dian & D’Ariano, Andrea & Zhao, Jun & Zhong, Qingwei & Peng, Qiyuan, 2022. "Integrated rolling stock deadhead routing and timetabling in urban rail transit lines," European Journal of Operational Research, Elsevier, vol. 298(2), pages 526-559.
    14. Cacchiani, Valentina & Toth, Paolo, 2012. "Nominal and robust train timetabling problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 727-737.
    15. Jiateng Yin & Lixing Yang & Andrea D’Ariano & Tao Tang & Ziyou Gao, 2022. "Integrated Backup Rolling Stock Allocation and Timetable Rescheduling with Uncertain Time-Variant Passenger Demand Under Disruptive Events," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3234-3258, November.
    16. Ning, Jingjie & Zhou, Yonghua & Long, Fengchu & Tao, Xin, 2018. "A synergistic energy-efficient planning approach for urban rail transit operations," Energy, Elsevier, vol. 151(C), pages 854-863.
    17. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2016. "The key principles of optimal train control—Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 482-508.
    18. Meng, Lingyun & Zhou, Xuesong, 2011. "Robust single-track train dispatching model under a dynamic and stochastic environment: A scenario-based rolling horizon solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1080-1102, August.
    19. Goverde, Rob M.P. & Scheepmaker, Gerben M. & Wang, Pengling, 2021. "Pseudospectral optimal train control," European Journal of Operational Research, Elsevier, vol. 292(1), pages 353-375.
    20. Jovanović, Predrag & Kecman, Pavle & Bojović, Nebojša & Mandić, Dragomir, 2017. "Optimal allocation of buffer times to increase train schedule robustness," European Journal of Operational Research, Elsevier, vol. 256(1), pages 44-54.
    21. Scheepmaker, Gerben M. & Goverde, Rob M.P. & Kroon, Leo G., 2017. "Review of energy-efficient train control and timetabling," European Journal of Operational Research, Elsevier, vol. 257(2), pages 355-376.
    22. Meloni, Carlo & Pranzo, Marco & Samà, Marcella, 2021. "Risk of delay evaluation in real-time train scheduling with uncertain dwell times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    23. Zhou, Leishan & Tong, Lu (Carol) & Chen, Junhua & Tang, Jinjin & Zhou, Xuesong, 2017. "Joint optimization of high-speed train timetables and speed profiles: A unified modeling approach using space-time-speed grid networks," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 157-181.
    24. Kaddani, Sami & Vanderpooten, Daniel & Vanpeperstraete, Jean-Michel & Aissi, Hassene, 2017. "Weighted sum model with partial preference information: Application to multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 260(2), pages 665-679.
    25. Mo, Pengli & D’Ariano, Andrea & Yang, Lixing & Veelenturf, Lucas P. & Gao, Ziyou, 2021. "An exact method for the integrated optimization of subway lines operation strategies with asymmetric passenger demand and operating costs," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 283-321.
    26. Masoud Shakibayifar & Erfan Hassannayebi & Hossein Jafary & Arman Sajedinejad, 2017. "Stochastic optimization of an urban rail timetable under time‐dependent and uncertain demand," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(6), pages 640-661, November.
    27. Yin, Jiateng & Tang, Tao & Yang, Lixing & Gao, Ziyou & Ran, Bin, 2016. "Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: An approximate dynamic programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 178-210.
    28. Zhan, Shuguang & Wang, Pengling & Wong, S.C. & Lo, S.M., 2022. "Energy-efficient high-speed train rescheduling during a major disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    29. Li, Xiang & Lo, Hong K., 2014. "Energy minimization in dynamic train scheduling and control for metro rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 269-284.
    30. D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2007. "A branch and bound algorithm for scheduling trains in a railway network," European Journal of Operational Research, Elsevier, vol. 183(2), pages 643-657, December.
    31. Haahr, Jørgen Thorlund & Pisinger, David & Sabbaghian, Mohammad, 2017. "A dynamic programming approach for optimizing train speed profiles with speed restrictions and passage points," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 167-182.
    32. Yang, Xin & Chen, Anthony & Ning, Bin & Tang, Tao, 2017. "Bi-objective programming approach for solving the metro timetable optimization problem with dwell time uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 22-37.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xuekai & Tang, Tao & Su, Shuai & Yin, Jiateng & Gao, Ziyou & Lv, Nan, 2021. "An integrated energy-efficient train operation approach based on the space-time-speed network methodology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    2. Zhang, Yongxiang & D'Ariano, Andrea & He, Bisheng & Peng, Qiyuan, 2019. "Microscopic optimization model and algorithm for integrating train timetabling and track maintenance task scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 237-278.
    3. Zhan, Shuguang & Xie, Jiemin & Wong, S.C. & Zhu, Yongqiu & Corman, Francesco, 2024. "Handling uncertainty in train timetable rescheduling: A review of the literature and future research directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    4. Wang, Pengling & Goverde, Rob M.P., 2019. "Multi-train trajectory optimization for energy-efficient timetabling," European Journal of Operational Research, Elsevier, vol. 272(2), pages 621-635.
    5. Zhaoxiang Tan & Shaofeng Lu & Kai Bao & Shaoning Zhang & Chaoxian Wu & Jie Yang & Fei Xue, 2018. "Adaptive Partial Train Speed Trajectory Optimization," Energies, MDPI, vol. 11(12), pages 1-33, November.
    6. Zhan, Shuguang & Wang, Pengling & Wong, S.C. & Lo, S.M., 2022. "Energy-efficient high-speed train rescheduling during a major disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    7. Andreas Bärmann & Alexander Martin & Oskar Schneider, 2021. "Efficient Formulations and Decomposition Approaches for Power Peak Reduction in Railway Traffic via Timetabling," Transportation Science, INFORMS, vol. 55(3), pages 747-767, May.
    8. Li, Wenxin & Peng, Qiyuan & Wen, Chao & Wang, Pengling & Lessan, Javad & Xu, Xinyue, 2020. "Joint optimization of delay-recovery and energy-saving in a metro system: A case study from China," Energy, Elsevier, vol. 202(C).
    9. Huanhuan Lv & Yuzhao Zhang & Kang Huang & Xiaotong Yu & Jianjun Wu, 2019. "An Energy-Efficient Timetable Optimization Approach in a Bi-DirectionUrban Rail Transit Line: A Mixed-Integer Linear Programming Model," Energies, MDPI, vol. 12(14), pages 1-24, July.
    10. Canca, David & Zarzo, Alejandro, 2017. "Design of energy-Efficient timetables in two-way railway rapid transit lines," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 142-161.
    11. Mo, Pengli & D’Ariano, Andrea & Yang, Lixing & Veelenturf, Lucas P. & Gao, Ziyou, 2021. "An exact method for the integrated optimization of subway lines operation strategies with asymmetric passenger demand and operating costs," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 283-321.
    12. Wang, Xuekai & D’Ariano, Andrea & Su, Shuai & Tang, Tao, 2023. "Cooperative train control during the power supply shortage in metro system: A multi-agent reinforcement learning approach," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 244-278.
    13. Yuan, Yin & Li, Shukai & Yang, Lixing & Gao, Ziyou, 2022. "Real-time optimization of train regulation and passenger flow control for urban rail transit network under frequent disturbances," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    14. Lu, Yahan & Yang, Lixing & Yang, Hai & Zhou, Housheng & Gao, Ziyou, 2023. "Robust collaborative passenger flow control on a congested metro line: A joint optimization with train timetabling," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 27-55.
    15. Wang, Pengling & Goverde, Rob M.P., 2017. "Multi-train trajectory optimization for energy efficiency and delay recovery on single-track railway lines," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 340-361.
    16. Zhou, Li & Yang, Xin & Wang, Huan & Wu, Jianjun & Chen, Lei & Yin, Haodong & Qu, Yunchao, 2020. "A robust train timetable optimization approach for reducing the number of waiting passengers in metro systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    17. Ying, Cheng-shuo & Chow, Andy H.F. & Chin, Kwai-Sang, 2020. "An actor-critic deep reinforcement learning approach for metro train scheduling with rolling stock circulation under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 210-235.
    18. Jiateng Yin & Lixing Yang & Xuesong Zhou & Tao Tang & Ziyou Gao, 2019. "Balancing a one‐way corridor capacity and safety‐oriented reliability: A stochastic optimization approach for metro train timetabling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(4), pages 297-320, June.
    19. Luan, Xiaojie & Wang, Yihui & De Schutter, Bart & Meng, Lingyun & Lodewijks, Gabriel & Corman, Francesco, 2018. "Integration of real-time traffic management and train control for rail networks - Part 2: Extensions towards energy-efficient train operations," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 72-94.
    20. Chen, Zebin & Li, Shukai & D’Ariano, Andrea & Yang, Lixing, 2022. "Real-time optimization for train regulation and stop-skipping adjustment strategy of urban rail transit lines," Omega, Elsevier, vol. 110(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:317:y:2024:i:1:p:219-242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.