IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v316y2024i3p906-929.html
   My bibliography  Save this article

New Exact Algorithm for the integrated train timetabling and rolling stock circulation planning problem with stochastic demand

Author

Listed:
  • Pan, Hanchuan
  • Yang, Lixing
  • Liang, Zhe
  • Yang, Hai

Abstract

This paper studies an integrated train timetabling and rolling stock circulation planning problem with stochastic demand and flexible train composition (TRSF). A novel stochastic integer programming model, which is formulated on a space-time underlying network to simultaneously optimize the train timetable and rolling stock circulation plan with flexible train composition, is proposed by explicitly considering the random feature of passenger distribution on an urban rail transit line. To solve this problem efficiently, the proposed model is decomposed into a master problem and a series of sub-problems regarding different stochastic scenarios. We further prove that each sub-problem model is equivalent to its linear programming relaxation problem, by proving that the coefficient matrix of each linear programming relaxation model is totally unimodular. Then, the classical Benders decomposition algorithm is applied to the studied problem. Based on the model characteristics, both single-cut and multi-cut methods with some speed-up techniques are developed to solve the proposed model in a novel and effective way. Numerical experiments are conducted on small-scale cases and large-scale cases derived from Shanghai Metro Line 17, and the results show that solving the stochastic problem can extract gains in efficiency and the value of stochastic solution tends to be high.

Suggested Citation

  • Pan, Hanchuan & Yang, Lixing & Liang, Zhe & Yang, Hai, 2024. "New Exact Algorithm for the integrated train timetabling and rolling stock circulation planning problem with stochastic demand," European Journal of Operational Research, Elsevier, vol. 316(3), pages 906-929.
  • Handle: RePEc:eee:ejores:v:316:y:2024:i:3:p:906-929
    DOI: 10.1016/j.ejor.2024.02.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724001255
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.02.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arianna Alfieri & Rutger Groot & Leo Kroon & Alexander Schrijver, 2006. "Efficient Circulation of Railway Rolling Stock," Transportation Science, INFORMS, vol. 40(3), pages 378-391, August.
    2. Luis Cadarso & Ángel Marín, 2012. "Integration of timetable planning and rolling stock in rapid transit networks," Annals of Operations Research, Springer, vol. 199(1), pages 113-135, October.
    3. Shi, Jungang & Yang, Lixing & Yang, Jing & Gao, Ziyou, 2018. "Service-oriented train timetabling with collaborative passenger flow control on an oversaturated metro line: An integer linear optimization approach," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 26-59.
    4. Pan, Hanchuan & Yang, Lixing & Liang, Zhe, 2023. "Demand-oriented integration optimization of train timetabling and rolling stock circulation planning with flexible train compositions: A column-generation-based approach," European Journal of Operational Research, Elsevier, vol. 305(1), pages 184-206.
    5. Scheffler, Martin & Neufeld, Janis S. & Hölscher, Michael, 2020. "An MIP-based heuristic solution approach for the locomotive assignment problem focussing on (dis-)connecting processes," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 64-80.
    6. Jin, Jian Gang & Zhao, Jun & Lee, Der-Horng, 2013. "A column generation based approach for the Train Network Design Optimization problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 1-17.
    7. Zhou, Housheng & Qi, Jianguo & Yang, Lixing & Shi, Jungang & Pan, Hanchuan & Gao, Yuan, 2022. "Joint optimization of train timetabling and rolling stock circulation planning: A novel flexible train composition mode," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 352-385.
    8. LeBlanc, Larry J., 1988. "Transit system network design," Transportation Research Part B: Methodological, Elsevier, vol. 22(5), pages 383-390, October.
    9. Ying, Cheng-shuo & Chow, Andy H.F. & Chin, Kwai-Sang, 2020. "An actor-critic deep reinforcement learning approach for metro train scheduling with rolling stock circulation under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 210-235.
    10. Yang, Lixing & Qi, Jianguo & Li, Shukai & Gao, Yuan, 2016. "Collaborative optimization for train scheduling and train stop planning on high-speed railways," Omega, Elsevier, vol. 64(C), pages 57-76.
    11. Wang, Yihui & D’Ariano, Andrea & Yin, Jiateng & Meng, Lingyun & Tang, Tao & Ning, Bin, 2018. "Passenger demand oriented train scheduling and rolling stock circulation planning for an urban rail transit line," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 193-227.
    12. Gilbert Laporte & FranÇois V. Louveaux & Luc van Hamme, 2002. "An Integer L -Shaped Algorithm for the Capacitated Vehicle Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 50(3), pages 415-423, June.
    13. Jiateng Yin & Lixing Yang & Xuesong Zhou & Tao Tang & Ziyou Gao, 2019. "Balancing a one‐way corridor capacity and safety‐oriented reliability: A stochastic optimization approach for metro train timetabling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(4), pages 297-320, June.
    14. Yang, Lixing & Zhou, Xuesong, 2017. "Optimizing on-time arrival probability and percentile travel time for elementary path finding in time-dependent transportation networks: Linear mixed integer programming reformulations," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 68-91.
    15. Jiateng Yin & Lixing Yang & Andrea D’Ariano & Tao Tang & Ziyou Gao, 2022. "Integrated Backup Rolling Stock Allocation and Timetable Rescheduling with Uncertain Time-Variant Passenger Demand Under Disruptive Events," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3234-3258, November.
    16. Di, Zhen & Yang, Lixing & Shi, Jungang & Zhou, Housheng & Yang, Kai & Gao, Ziyou, 2022. "Joint optimization of carriage arrangement and flow control in a metro-based underground logistics system," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 1-23.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Hanchuan & Yang, Lixing & Liang, Zhe, 2023. "Demand-oriented integration optimization of train timetabling and rolling stock circulation planning with flexible train compositions: A column-generation-based approach," European Journal of Operational Research, Elsevier, vol. 305(1), pages 184-206.
    2. Zhou, Housheng & Qi, Jianguo & Yang, Lixing & Shi, Jungang & Pan, Hanchuan & Gao, Yuan, 2022. "Joint optimization of train timetabling and rolling stock circulation planning: A novel flexible train composition mode," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 352-385.
    3. Pan Shang & Yu Yao & Liya Yang & Lingyun Meng & Pengli Mo, 2021. "Integrated Model for Timetabling and Circulation Planning on an Urban Rail Transit Line: a Coupled Network-Based Flow Formulation," Networks and Spatial Economics, Springer, vol. 21(2), pages 331-364, June.
    4. Yang, Lin & Gao, Yuan & D’Ariano, Andrea & Xu, Suxiu, 2024. "Integrated optimization of train timetable and train unit circulation for a Y-type urban rail transit system with flexible train composition mode," Omega, Elsevier, vol. 122(C).
    5. Xu, Guangming & Zhong, Linhuan & Liu, Wei & Guo, Jing, 2024. "A flexible train composition strategy with extra-long trains for high-speed railway corridors with time-varying demand," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    6. Zhao, Yaqiong & Li, Dewei & Yin, Yonghao & Zhao, Xiaoli, 2023. "Integrated optimization of demand-driven timetable, train formation plan and rolling stock circulation with variable running times and dwell times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    7. Chai, Simin & Yin, Jiateng & D’Ariano, Andrea & Liu, Ronghui & Yang, Lixing & Tang, Tao, 2024. "A branch-and-cut algorithm for scheduling train platoons in urban rail networks," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    8. Yin, Jiateng & Wang, Miao & D’Ariano, Andrea & Zhang, Jinlei & Yang, Lixing, 2023. "Synchronization of train timetables in an urban rail network: A bi-objective optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    9. Ji, Hangyu & Wang, Rui & Zhang, Chuntian & Yin, Jiateng & Ma, Lin & Yang, Lixing, 2024. "Optimization of train schedule with uncertain maintenance plans in high-speed railways: A stochastic programming approach," Omega, Elsevier, vol. 124(C).
    10. Shuo Zhao & Jinfei Wu & Zhenyi Li & Ge Meng, 2022. "Train Operational Plan Optimization for Urban Rail Transit Lines Considering Circulation Balance," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    11. Wang, Entai & Yang, Lixing & Yin, Jiateng & Zhang, Jinlei & Gao, Ziyou, 2024. "Passenger-oriented rolling stock scheduling in the metro system with multiple depots: Network flow based approaches," Transportation Research Part B: Methodological, Elsevier, vol. 180(C).
    12. Pan, Hanchuan & Liu, Zhigang & Yang, Lixing & Liang, Zhe & Wu, Qiang & Li, Sijie, 2021. "A column generation-based approach for integrated vehicle and crew scheduling on a single metro line with the fully automatic operation system by partial supervision," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    13. Liu, Renming & Li, Shukai & Yang, Lixing, 2020. "Collaborative optimization for metro train scheduling and train connections combined with passenger flow control strategy," Omega, Elsevier, vol. 90(C).
    14. Mo, Pengli & D’Ariano, Andrea & Yang, Lixing & Veelenturf, Lucas P. & Gao, Ziyou, 2021. "An exact method for the integrated optimization of subway lines operation strategies with asymmetric passenger demand and operating costs," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 283-321.
    15. Yuan, Jiawei & Gao, Yuan & Li, Shukai & Liu, Pei & Yang, Lixing, 2022. "Integrated optimization of train timetable, rolling stock assignment and short-turning strategy for a metro line," European Journal of Operational Research, Elsevier, vol. 301(3), pages 855-874.
    16. Yin, Jiateng & D’Ariano, Andrea & Wang, Yihui & Yang, Lixing & Tang, Tao, 2021. "Timetable coordination in a rail transit network with time-dependent passenger demand," European Journal of Operational Research, Elsevier, vol. 295(1), pages 183-202.
    17. Wang, Yihui & D’Ariano, Andrea & Yin, Jiateng & Meng, Lingyun & Tang, Tao & Ning, Bin, 2018. "Passenger demand oriented train scheduling and rolling stock circulation planning for an urban rail transit line," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 193-227.
    18. Gong, Manlin & Hu, Yucong & Chen, Zhiwei & Li, Xiaopeng, 2021. "Transfer-based customized modular bus system design with passenger-route assignment optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    19. Limsawasd, Charinee & Athigakunagorn, Nathee & Khathawatcharakun, Phattadon & Boonmee, Atiwat, 2022. "Skip-Stop Strategy Patterns optimization to enhance mass transit operation under physical distancing policy due to COVID-19 pandemic outbreak," Transport Policy, Elsevier, vol. 126(C), pages 225-238.
    20. Ali Shahabi & Sadigh Raissi & Kaveh Khalili-Damghani & Meysam Rafei, 2021. "Designing a resilient skip-stop schedule in rapid rail transit using a simulation-based optimization methodology," Operational Research, Springer, vol. 21(3), pages 1691-1721, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:316:y:2024:i:3:p:906-929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.