IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v319y2024i1p168-190.html
   My bibliography  Save this article

Real-time train timetabling with virtual coupling operations on a Y-type metro line

Author

Listed:
  • Wang, Hongyang
  • Yang, Lixing
  • Zhang, Jinlei
  • Luo, Qin
  • Fan, Zhongsheng

Abstract

The spatiotemporal imbalance of passenger flows is a prominent characteristic of urban rail transit systems. To match the provided transportation capacity with passenger distribution, this study considers an integer linear programming model to optimize train operation on a Y-type line, including the train timetable, rolling stock circulation plan and virtual coupling/uncoupling strategy that enables trains to switch between different compositions or configurations during operations. To enhance solution efficiency, certain integer decision variables in the model are relaxed to be continuous, and it is proved that this does not affect the optimal value of the model. To account for the dynamic nature of passenger flows, a “prediction + optimization” method with the rolling optimization framework, which utilizes real-time predicted passenger flow data to enable train operations to be performed and adjusted in response, is proposed. Three variants of the proposed model are embedded to meet the real-time requirements of operations. Numerical experiments verify the effectiveness and applicability of our proposed approach, with real-world data from Shanghai Metro Line 5. The computational results demonstrate that our method performs well under operation scenarios with both normal and abnormal passenger flows. Compared to fixed train composition, virtual coupling can perform much better in both peak and off-peak periods.

Suggested Citation

  • Wang, Hongyang & Yang, Lixing & Zhang, Jinlei & Luo, Qin & Fan, Zhongsheng, 2024. "Real-time train timetabling with virtual coupling operations on a Y-type metro line," European Journal of Operational Research, Elsevier, vol. 319(1), pages 168-190.
  • Handle: RePEc:eee:ejores:v:319:y:2024:i:1:p:168-190
    DOI: 10.1016/j.ejor.2024.06.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724004697
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.06.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, Jiawei & Gao, Yuan & Li, Shukai & Liu, Pei & Yang, Lixing, 2022. "Integrated optimization of train timetable, rolling stock assignment and short-turning strategy for a metro line," European Journal of Operational Research, Elsevier, vol. 301(3), pages 855-874.
    2. Zhang, Di & Gao, Yuan & Yang, Lixing & Cui, Lixin, 2024. "Timetable synchronization of the last several trains at night in an urban rail transit network," European Journal of Operational Research, Elsevier, vol. 313(2), pages 494-512.
    3. Lin, Zhiyuan & Kwan, Raymond S.K., 2016. "A branch-and-price approach for solving the train unit scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 97-120.
    4. Shi, Jungang & Yang, Lixing & Yang, Jing & Gao, Ziyou, 2018. "Service-oriented train timetabling with collaborative passenger flow control on an oversaturated metro line: An integer linear optimization approach," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 26-59.
    5. Liu, Renming & Li, Shukai & Yang, Lixing, 2020. "Collaborative optimization for metro train scheduling and train connections combined with passenger flow control strategy," Omega, Elsevier, vol. 90(C).
    6. Pan, Hanchuan & Yang, Lixing & Liang, Zhe, 2023. "Demand-oriented integration optimization of train timetabling and rolling stock circulation planning with flexible train compositions: A column-generation-based approach," European Journal of Operational Research, Elsevier, vol. 305(1), pages 184-206.
    7. Wang, Dian & D’Ariano, Andrea & Zhao, Jun & Zhan, Shuguang & Peng, Qiyuan, 2024. "Joint rolling stock rotation planning and depot deadhead scheduling in complicated urban rail transit lines," European Journal of Operational Research, Elsevier, vol. 314(2), pages 665-684.
    8. Scheffler, Martin & Neufeld, Janis S. & Hölscher, Michael, 2020. "An MIP-based heuristic solution approach for the locomotive assignment problem focussing on (dis-)connecting processes," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 64-80.
    9. Pan, Hanchuan & Yang, Lixing & Liang, Zhe & Yang, Hai, 2024. "New Exact Algorithm for the integrated train timetabling and rolling stock circulation planning problem with stochastic demand," European Journal of Operational Research, Elsevier, vol. 316(3), pages 906-929.
    10. Niu, Huimin & Zhou, Xuesong & Gao, Ruhu, 2015. "Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop patterns: Nonlinear integer programming models with linear constraints," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 117-135.
    11. Zhou, Housheng & Qi, Jianguo & Yang, Lixing & Shi, Jungang & Pan, Hanchuan & Gao, Yuan, 2022. "Joint optimization of train timetabling and rolling stock circulation planning: A novel flexible train composition mode," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 352-385.
    12. Wang, Yihui & D’Ariano, Andrea & Yin, Jiateng & Meng, Lingyun & Tang, Tao & Ning, Bin, 2018. "Passenger demand oriented train scheduling and rolling stock circulation planning for an urban rail transit line," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 193-227.
    13. Wu, Yinghui & Yang, Hai & Zhao, Shuo & Shang, Pan, 2021. "Mitigating unfairness in urban rail transit operation: A mixed-integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 418-442.
    14. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part III: Multi-destination flows," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 305-313, August.
    15. Arianna Alfieri & Rutger Groot & Leo Kroon & Alexander Schrijver, 2006. "Efficient Circulation of Railway Rolling Stock," Transportation Science, INFORMS, vol. 40(3), pages 378-391, August.
    16. Camilo Ortiz-Astorquiza & Jean-François Cordeau & Emma Frejinger, 2021. "The Locomotive Assignment Problem with Distributed Power at the Canadian National Railway Company," Transportation Science, INFORMS, vol. 55(2), pages 510-531, March.
    17. Hartleb, Johann & Schmidt, Marie, 2022. "Railway timetabling with integrated passenger distribution," European Journal of Operational Research, Elsevier, vol. 298(3), pages 953-966.
    18. Hamid, Faiz & Agarwal, Yogesh K., 2024. "Train stop scheduling problem: An exact approach using valid inequalities and polar duality," European Journal of Operational Research, Elsevier, vol. 313(1), pages 207-224.
    19. Martin-Iradi, Bernardo & Ropke, Stefan, 2022. "A column-generation-based matheuristic for periodic and symmetric train timetabling with integrated passenger routing," European Journal of Operational Research, Elsevier, vol. 297(2), pages 511-531.
    20. Lian, Deheng & Mo, Pengli & D’Ariano, Andrea & Gao, Ziyou & Yang, Lixing, 2024. "Energy-saving time allocation strategy with uncertain dwell times in urban rail transit: Two-stage stochastic model and nested dynamic programming framework," European Journal of Operational Research, Elsevier, vol. 317(1), pages 219-242.
    21. Tian, Xiaopeng & Niu, Huimin, 2020. "Optimization of demand-oriented train timetables under overtaking operations: A surrogate-dual-variable column generation for eliminating indivisibility," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 143-173.
    22. Fioole, Pieter-Jan & Kroon, Leo & Maroti, Gabor & Schrijver, Alexander, 2006. "A rolling stock circulation model for combining and splitting of passenger trains," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1281-1297, October.
    23. Yin, Jiateng & Yang, Lixing & Tang, Tao & Gao, Ziyou & Ran, Bin, 2017. "Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 182-213.
    24. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 281-287, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Housheng & Qi, Jianguo & Yang, Lixing & Shi, Jungang & Pan, Hanchuan & Gao, Yuan, 2022. "Joint optimization of train timetabling and rolling stock circulation planning: A novel flexible train composition mode," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 352-385.
    2. Pan, Hanchuan & Yang, Lixing & Liang, Zhe, 2023. "Demand-oriented integration optimization of train timetabling and rolling stock circulation planning with flexible train compositions: A column-generation-based approach," European Journal of Operational Research, Elsevier, vol. 305(1), pages 184-206.
    3. Yang, Lin & Gao, Yuan & D’Ariano, Andrea & Xu, Suxiu, 2024. "Integrated optimization of train timetable and train unit circulation for a Y-type urban rail transit system with flexible train composition mode," Omega, Elsevier, vol. 122(C).
    4. Zhao, Yaqiong & Li, Dewei & Yin, Yonghao & Zhao, Xiaoli, 2023. "Integrated optimization of demand-driven timetable, train formation plan and rolling stock circulation with variable running times and dwell times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    5. Chai, Simin & Yin, Jiateng & D’Ariano, Andrea & Liu, Ronghui & Yang, Lixing & Tang, Tao, 2024. "A branch-and-cut algorithm for scheduling train platoons in urban rail networks," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    6. Wang, Entai & Yang, Lixing & Yin, Jiateng & Zhang, Jinlei & Gao, Ziyou, 2024. "Passenger-oriented rolling stock scheduling in the metro system with multiple depots: Network flow based approaches," Transportation Research Part B: Methodological, Elsevier, vol. 180(C).
    7. Pan, Hanchuan & Yang, Lixing & Liang, Zhe & Yang, Hai, 2024. "New Exact Algorithm for the integrated train timetabling and rolling stock circulation planning problem with stochastic demand," European Journal of Operational Research, Elsevier, vol. 316(3), pages 906-929.
    8. Shang, Pan & Li, Ruimin & Guo, Jifu & Xian, Kai & Zhou, Xuesong, 2019. "Integrating Lagrangian and Eulerian observations for passenger flow state estimation in an urban rail transit network: A space-time-state hyper network-based assignment approach," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 135-167.
    9. Yin, Jiateng & Wang, Miao & D’Ariano, Andrea & Zhang, Jinlei & Yang, Lixing, 2023. "Synchronization of train timetables in an urban rail network: A bi-objective optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    10. Chen, Zebin & D’Ariano, Andrea & Li, Shukai & Tessitore, Marta Leonina & Yang, Lixing, 2024. "Robust dynamic train regulation integrated with stop-skipping strategy in urban rail networks: An outer approximation based solution method," Omega, Elsevier, vol. 128(C).
    11. Pan Shang & Yu Yao & Liya Yang & Lingyun Meng & Pengli Mo, 2021. "Integrated Model for Timetabling and Circulation Planning on an Urban Rail Transit Line: a Coupled Network-Based Flow Formulation," Networks and Spatial Economics, Springer, vol. 21(2), pages 331-364, June.
    12. Yuan, Jiawei & Gao, Yuan & Li, Shukai & Liu, Pei & Yang, Lixing, 2022. "Integrated optimization of train timetable, rolling stock assignment and short-turning strategy for a metro line," European Journal of Operational Research, Elsevier, vol. 301(3), pages 855-874.
    13. Huang, Yu & Zhou, Wenliang & Qin, Jin & Deng, Lianbo, 2023. "Optimization of energy-efficiency train schedule considering passenger demand and rolling stock circulation plan of subway line," Energy, Elsevier, vol. 275(C).
    14. Shuo Zhao & Jinfei Wu & Zhenyi Li & Ge Meng, 2022. "Train Operational Plan Optimization for Urban Rail Transit Lines Considering Circulation Balance," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    15. Xu, Guangming & Zhong, Linhuan & Liu, Wei & Guo, Jing, 2024. "A flexible train composition strategy with extra-long trains for high-speed railway corridors with time-varying demand," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    16. Wang, Yihui & D’Ariano, Andrea & Yin, Jiateng & Meng, Lingyun & Tang, Tao & Ning, Bin, 2018. "Passenger demand oriented train scheduling and rolling stock circulation planning for an urban rail transit line," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 193-227.
    17. Shi, Jungang & Yang, Jing & Yang, Lixing & Tao, Lefeng & Qiang, Shengjie & Di, Zhen & Guo, Junhua, 2023. "Safety-oriented train timetabling and stop planning with time-varying and elastic demand on overcrowded commuter metro lines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    18. Mo, Pengli & D’Ariano, Andrea & Yang, Lixing & Veelenturf, Lucas P. & Gao, Ziyou, 2021. "An exact method for the integrated optimization of subway lines operation strategies with asymmetric passenger demand and operating costs," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 283-321.
    19. Xue, Hongjiao & Jia, Limin & Li, Jian & Guo, Jianyuan, 2022. "Jointly optimized demand-oriented train timetable and passenger flow control strategy for a congested subway line under a short-turning operation pattern," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    20. Liang, Jinpeng & Zang, Guangzhi & Liu, Haitao & Zheng, Jianfeng & Gao, Ziyou, 2023. "Reducing passenger waiting time in oversaturated metro lines with passenger flow control policy," Omega, Elsevier, vol. 117(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:319:y:2024:i:1:p:168-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.