IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v320y2025i1p205-218.html
   My bibliography  Save this article

Bilevel optimization approach for fuel treatment planning

Author

Listed:
  • Lagos, Tomás
  • Choi, Junyeong
  • Segundo, Brittany
  • Gan, Jianbang
  • Ntaimo, Lewis
  • Prokopyev, Oleg A.

Abstract

Various fuel treatment practices involve removing all or some of the vegetation (fuel) from a landscape to reduce the potential for fires and their severity. Fuel treatments form the first line of defense against large-scale wildfires. In this study, we formulate and solve a bilevel integer programming model, where the fuel treatment planner (modeled as the leader) determines appropriate locations and types of treatments to minimize expected losses from wildfires. The follower (i.e., the lower-level decision-maker) corresponds to nature, which is adversarial to the leader and designs a wildfire attack (i.e., locations and time periods, where and when, respectively, wildfires occur) to disrupt the leader’s objective function, e.g., the total expected area burnt. Both levels in the model involve integrality restrictions for decision variables; hence, we explore the model’s difficulty from the computational complexity perspective. Then, we design specialized solution methods for general and some special cases. We perform experiments with semi-synthetic and real-life instances to illustrate the performance of our approaches. We also explore numerically the fundamental differences in the structural properties of solutions arising from bilevel model and its single-level counterpart. These disparities encompass factors like the types of treatments applied and the choice of treated areas. Additionally, we conduct various types of sensitivity analysis on the performance of the obtained policies and illustrate the value of the bilevel solutions.

Suggested Citation

  • Lagos, Tomás & Choi, Junyeong & Segundo, Brittany & Gan, Jianbang & Ntaimo, Lewis & Prokopyev, Oleg A., 2025. "Bilevel optimization approach for fuel treatment planning," European Journal of Operational Research, Elsevier, vol. 320(1), pages 205-218.
  • Handle: RePEc:eee:ejores:v:320:y:2025:i:1:p:205-218
    DOI: 10.1016/j.ejor.2024.07.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724005551
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.07.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eghbal Rashidi & Hugh Medal & Aaron Hoskins, 2018. "An attacker‐defender model for analyzing the vulnerability of initial attack in wildfire suppression," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(2), pages 120-134, March.
    2. James Minas & John Hearne & David Martell, 2015. "An integrated optimization model for fuel management and fire suppression preparedness planning," Annals of Operations Research, Springer, vol. 232(1), pages 201-215, September.
    3. Hartsough, Bruce R. & Abrams, Scott & Barbour, R. James & Drews, Erik S. & McIver, James D. & Moghaddas, Jason J. & Schwilk, Dylan W. & Stephens, Scott L., 2008. "The economics of alternative fuel reduction treatments in western United States dry forests: Financial and policy implications from the National Fire and Fire Surrogate Study," Forest Policy and Economics, Elsevier, vol. 10(6), pages 344-354, August.
    4. Bhuiyan, Tanveer Hossain & Moseley, Maxwell C. & Medal, Hugh R. & Rashidi, Eghbal & Grala, Robert K., 2019. "A stochastic programming model with endogenous uncertainty for incentivizing fuel reduction treatment under uncertain landowner behavior," European Journal of Operational Research, Elsevier, vol. 277(2), pages 699-718.
    5. M. Hosein Zare & Juan S. Borrero & Bo Zeng & Oleg A. Prokopyev, 2019. "A note on linearized reformulations for a class of bilevel linear integer problems," Annals of Operations Research, Springer, vol. 272(1), pages 99-117, January.
    6. Alberto Caprara & Margarida Carvalho & Andrea Lodi & Gerhard J. Woeginger, 2016. "Bilevel Knapsack with Interdiction Constraints," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 319-333, May.
    7. Minas, James P. & Hearne, John W. & Martell, David L., 2014. "A spatial optimisation model for multi-period landscape level fuel management to mitigate wildfire impacts," European Journal of Operational Research, Elsevier, vol. 232(2), pages 412-422.
    8. Fred Glover, 1975. "Improved Linear Integer Programming Formulations of Nonlinear Integer Problems," Management Science, INFORMS, vol. 22(4), pages 455-460, December.
    9. Elizabeth A. Wilman, 2015. "An economic model of aboriginal fire-stick farming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(1), pages 39-60, January.
    10. Colin P. Gillen & Dmytro Matsypura & Oleg A. Prokopyev, 2017. "Operations Research Techniques in Wildfire Fuel Management," Springer Optimization and Its Applications, in: Sergiy Butenko & Panos M. Pardalos & Volodymyr Shylo (ed.), Optimization Methods and Applications, pages 119-135, Springer.
    11. Matsypura, Dmytro & Prokopyev, Oleg A. & Zahar, Aizat, 2018. "Wildfire fuel management: Network-based models and optimization of prescribed burning," European Journal of Operational Research, Elsevier, vol. 264(2), pages 774-796.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avci, Mualla Gonca & Avci, Mustafa & Battarra, Maria & Erdoğan, Güneş, 2024. "The wildfire suppression problem with multiple types of resources," European Journal of Operational Research, Elsevier, vol. 316(2), pages 488-502.
    2. Bhuiyan, Tanveer Hossain & Moseley, Maxwell C. & Medal, Hugh R. & Rashidi, Eghbal & Grala, Robert K., 2019. "A stochastic programming model with endogenous uncertainty for incentivizing fuel reduction treatment under uncertain landowner behavior," European Journal of Operational Research, Elsevier, vol. 277(2), pages 699-718.
    3. Adán Rodríguez-Martínez & Begoña Vitoriano, 2020. "Probability-Based Wildfire Risk Measure for Decision-Making," Mathematics, MDPI, vol. 8(4), pages 1-18, April.
    4. Liu, Shaonan & Wang, Mingzheng & Kong, Nan & Hu, Xiangpei, 2021. "An enhanced branch-and-bound algorithm for bilevel integer linear programming," European Journal of Operational Research, Elsevier, vol. 291(2), pages 661-679.
    5. Esther Jose & Puneet Agarwal & Jun Zhuang, 2023. "A data-driven analysis and optimization of the impact of prescribed fire programs on wildfire risk in different regions of the USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 181-207, August.
    6. M. Hosein Zare & Oleg A. Prokopyev & Denis Sauré, 2020. "On Bilevel Optimization with Inexact Follower," Decision Analysis, INFORMS, vol. 17(1), pages 74-95, March.
    7. Matsypura, Dmytro & Prokopyev, Oleg A. & Zahar, Aizat, 2018. "Wildfire fuel management: Network-based models and optimization of prescribed burning," European Journal of Operational Research, Elsevier, vol. 264(2), pages 774-796.
    8. Bashiri, Mahdi & Nikzad, Erfaneh & Eberhard, Andrew & Hearne, John & Oliveira, Fabricio, 2021. "A two stage stochastic programming for asset protection routing and a solution algorithm based on the Progressive Hedging algorithm," Omega, Elsevier, vol. 104(C).
    9. Yuquan Qu & Diego G. Miralles & Sander Veraverbeke & Harry Vereecken & Carsten Montzka, 2023. "Wildfire precursors show complementary predictability in different timescales," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Yokoyama, Ryohei & Kitano, Hiroyuki & Wakui, Tetsuya, 2017. "Optimal operation of heat supply systems with piping network," Energy, Elsevier, vol. 137(C), pages 888-897.
    11. Chai, Li & Saffron, Christopher M., 2016. "Comparing pelletization and torrefaction depots: Optimization of depot capacity and biomass moisture to determine the minimum production cost," Applied Energy, Elsevier, vol. 163(C), pages 387-395.
    12. Araya-Córdova, P.J. & Vásquez, Óscar C., 2018. "The disaster emergency unit scheduling problem to control wildfires," International Journal of Production Economics, Elsevier, vol. 200(C), pages 311-317.
    13. Christodoulos Floudas & Xiaoxia Lin, 2005. "Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications," Annals of Operations Research, Springer, vol. 139(1), pages 131-162, October.
    14. Gupta, Renu & Bandopadhyaya, Lakshmisree & Puri, M. C., 1996. "Ranking in quadratic integer programming problems," European Journal of Operational Research, Elsevier, vol. 95(1), pages 231-236, November.
    15. Osman, Hany & Demirli, Kudret, 2010. "A bilinear goal programming model and a modified Benders decomposition algorithm for supply chain reconfiguration and supplier selection," International Journal of Production Economics, Elsevier, vol. 124(1), pages 97-105, March.
    16. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    17. Verbiest, Floor & Cornelissens, Trijntje & Springael, Johan, 2019. "A matheuristic approach for the design of multiproduct batch plants with parallel production lines," European Journal of Operational Research, Elsevier, vol. 273(3), pages 933-947.
    18. Biswas, Debajyoti & Alfandari, Laurent, 2022. "Designing an optimal sequence of non‐pharmaceutical interventions for controlling COVID-19," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1372-1391.
    19. Ricardo M. Lima & Ignacio E. Grossmann, 2017. "On the solution of nonconvex cardinality Boolean quadratic programming problems: a computational study," Computational Optimization and Applications, Springer, vol. 66(1), pages 1-37, January.
    20. Jih-Jeng Huang, 2016. "Resource decision making for vertical and horizontal integration problems in an enterprise," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(11), pages 1363-1372, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:320:y:2025:i:1:p:205-218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.