IDEAS home Printed from https://ideas.repec.org/a/eee/oprepe/v8y2021ics2214716021000014.html
   My bibliography  Save this article

A study of robust portfolio optimization with European options using polyhedral uncertainty sets

Author

Listed:
  • Ashrafi, Hedieh
  • Thiele, Aurélie C.

Abstract

We consider the problem of maximizing the worst-case return of a portfolio when the manager can invest in stocks as well as European options on those stocks, and the stock returns are modeled using an uncertainty set approach. Specifically, the manager knows a range forecast for each factor driving the returns and a budget of uncertainty limiting the scaled deviations of these factors from their nominal values. Our goal is to understand the impact of options on the optimal portfolio allocation. We present theoretical results regarding the structure of that optimal allocation, in particular with respect to portfolio diversification. Specifically, we show that the presence of options only leads to limited diversification across the financial instruments available. We compare our robust portfolio to several benchmarks in numerical experiments and analyze how the optimal allocation varies with the budget of uncertainty. Our results indicate that our approach performs very well in practice.

Suggested Citation

  • Ashrafi, Hedieh & Thiele, Aurélie C., 2021. "A study of robust portfolio optimization with European options using polyhedral uncertainty sets," Operations Research Perspectives, Elsevier, vol. 8(C).
  • Handle: RePEc:eee:oprepe:v:8:y:2021:i:c:s2214716021000014
    DOI: 10.1016/j.orp.2021.100178
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2214716021000014
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.orp.2021.100178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rüdiger Frey & Carlos A. Sin, 1999. "Bounds on European Option Prices under Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 97-116, April.
    2. Shen, Ruijun & Zhang, Shuzhong, 2008. "Robust portfolio selection based on a multi-stage scenario tree," European Journal of Operational Research, Elsevier, vol. 191(3), pages 864-887, December.
    3. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    4. Matmoura, Yassine & Penev, Spiridon, 2013. "Multistage optimization of option portfolio using higher order coherent risk measures," European Journal of Operational Research, Elsevier, vol. 227(1), pages 190-198.
    5. Giorgio Consigli & Daniel Kuhn & Paolo Brandimarte, 2017. "Optimal Financial Decision Making Under Uncertainty," International Series in Operations Research & Management Science, in: Giorgio Consigli & Daniel Kuhn & Paolo Brandimarte (ed.), Optimal Financial Decision Making under Uncertainty, chapter 0, pages 255-290, Springer.
    6. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    7. Ling, Aifan & Sun, Jie & Wang, Meihua, 2020. "Robust multi-period portfolio selection based on downside risk with asymmetrically distributed uncertainty set," European Journal of Operational Research, Elsevier, vol. 285(1), pages 81-95.
    8. Dimitris Bertsimas & Dan A. Iancu & Pablo A. Parrilo, 2010. "Optimality of Affine Policies in Multistage Robust Optimization," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 363-394, May.
    9. Lorenzo Garlappi & Raman Uppal & Tan Wang, 2007. "Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 41-81, January.
    10. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    11. Zymler, Steve & Rustem, Berç & Kuhn, Daniel, 2011. "Robust portfolio optimization with derivative insurance guarantees," European Journal of Operational Research, Elsevier, vol. 210(2), pages 410-424, April.
    12. Vijay K. Chopra & William T. Ziemba, 2013. "The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 21, pages 365-373, World Scientific Publishing Co. Pte. Ltd..
    13. R.H. Tütüncü & M. Koenig, 2004. "Robust Asset Allocation," Annals of Operations Research, Springer, vol. 132(1), pages 157-187, November.
    14. Bandi, Chaithanya & Bertsimas, Dimitris, 2014. "Robust option pricing," European Journal of Operational Research, Elsevier, vol. 239(3), pages 842-853.
    15. Dimitris Bertsimas & Aurélie Thiele, 2006. "A Robust Optimization Approach to Inventory Theory," Operations Research, INFORMS, vol. 54(1), pages 150-168, February.
    16. Jian Hu & Junxuan Li & Sanjay Mehrotra, 2019. "A Data-Driven Functionally Robust Approach for Simultaneous Pricing and Order Quantity Decisions with Unknown Demand Function," Operations Research, INFORMS, vol. 67(6), pages 1564-1585, November.
    17. Libo Yin & Liyan Han, 2020. "International Assets Allocation with Risk Management via Multi-Stage Stochastic Programming," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 383-405, February.
    18. Shushang Zhu & Masao Fukushima, 2009. "Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management," Operations Research, INFORMS, vol. 57(5), pages 1155-1168, October.
    19. Napat Rujeerapaiboon & Daniel Kuhn & Wolfram Wiesemann, 2016. "Robust Growth-Optimal Portfolios," Management Science, INFORMS, vol. 62(7), pages 2090-2109, July.
    20. Lim, Gino J. & Kardar, Laleh & Ebrahimi, Saba & Cao, Wenhua, 2020. "A risk-based modeling approach for radiation therapy treatment planning under tumor shrinkage uncertainty," European Journal of Operational Research, Elsevier, vol. 280(1), pages 266-278.
    21. Saeed Marzban & Masoud Mahootchi & Alireza Arshadi Khamseh, 2015. "Developing a multi-period robust optimization model considering American style options," Annals of Operations Research, Springer, vol. 233(1), pages 305-320, October.
    22. Leung, Pui-Lam & Ng, Hon-Yip & Wong, Wing-Keung, 2012. "An improved estimation to make Markowitz’s portfolio optimization theory users friendly and estimation accurate with application on the US stock market investment," European Journal of Operational Research, Elsevier, vol. 222(1), pages 85-95.
    23. Longstaff, Francis A, 1992. "Are Negative Option Prices Possible? The Callable U.S. Treasury-Bond Puzzle," The Journal of Business, University of Chicago Press, vol. 65(4), pages 571-592, October.
    24. Steve Zymler & Daniel Kuhn & Berç Rustem, 2013. "Worst-Case Value at Risk of Nonlinear Portfolios," Management Science, INFORMS, vol. 59(1), pages 172-188, July.
    25. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.
    26. DeMarzo, Peter M. & Kremer, Ilan & Mansour, Yishay, 2016. "Robust option pricing: Hannan and Blackwell meet Black and Scholes," Journal of Economic Theory, Elsevier, vol. 163(C), pages 410-434.
    27. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    28. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    29. Frank Lutgens & Jos Sturm & Antoon Kolen, 2006. "Robust One-Period Option Hedging," Operations Research, INFORMS, vol. 54(6), pages 1051-1062, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    2. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    3. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2018. "Recent advancements in robust optimization for investment management," Annals of Operations Research, Springer, vol. 266(1), pages 183-198, July.
    4. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    5. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    6. Zhilin Kang & Zhongfei Li, 2018. "An exact solution to a robust portfolio choice problem with multiple risk measures under ambiguous distribution," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(2), pages 169-195, April.
    7. Fernandes, Betina & Street, Alexandre & Valladão, Davi & Fernandes, Cristiano, 2016. "An adaptive robust portfolio optimization model with loss constraints based on data-driven polyhedral uncertainty sets," European Journal of Operational Research, Elsevier, vol. 255(3), pages 961-970.
    8. Maria Scutellà & Raffaella Recchia, 2013. "Robust portfolio asset allocation and risk measures," Annals of Operations Research, Springer, vol. 204(1), pages 145-169, April.
    9. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    10. Selim Mankai & Khaled Guesmi, 2014. "Robust Portfolio Protection: A Scenarios-Based Approach," Working Papers hal-04141326, HAL.
    11. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    12. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.
    13. Ling, Aifan & Sun, Jie & Wang, Meihua, 2020. "Robust multi-period portfolio selection based on downside risk with asymmetrically distributed uncertainty set," European Journal of Operational Research, Elsevier, vol. 285(1), pages 81-95.
    14. Gian Paolo Clemente & Rosanna Grassi & Asmerilda Hitaj, 2022. "Smart network based portfolios," Annals of Operations Research, Springer, vol. 316(2), pages 1519-1541, September.
    15. Lotfi, Somayyeh & Zenios, Stavros A., 2018. "Robust VaR and CVaR optimization under joint ambiguity in distributions, means, and covariances," European Journal of Operational Research, Elsevier, vol. 269(2), pages 556-576.
    16. Benati, S. & Conde, E., 2022. "A relative robust approach on expected returns with bounded CVaR for portfolio selection," European Journal of Operational Research, Elsevier, vol. 296(1), pages 332-352.
    17. Sandra Cruz Caçador & Pedro Manuel Cortesão Godinho & Joana Maria Pina Cabral Matos Dias, 2022. "A minimax regret portfolio model based on the investor’s utility loss," Operational Research, Springer, vol. 22(1), pages 449-484, March.
    18. Meade, N. & Beasley, J.E. & Adcock, C.J., 2021. "Quantitative portfolio selection: Using density forecasting to find consistent portfolios," European Journal of Operational Research, Elsevier, vol. 288(3), pages 1053-1067.
    19. Huang, Dashan & Zhu, Shushang & Fabozzi, Frank J. & Fukushima, Masao, 2010. "Portfolio selection under distributional uncertainty: A relative robust CVaR approach," European Journal of Operational Research, Elsevier, vol. 203(1), pages 185-194, May.
    20. A. Georgantas, 2020. "Robust Optimization Approaches for Portfolio Selection: A Computational and Comparative Analysis," Papers 2010.13397, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:oprepe:v:8:y:2021:i:c:s2214716021000014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/operations-research-perspectives .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.