IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v217y2014i1p357-38310.1007-s10479-014-1564-z.html
   My bibliography  Save this article

A hybrid framework for optimizing beam angles in radiation therapy planning

Author

Listed:
  • Gino Lim
  • Laleh Kardar
  • Wenhua Cao

Abstract

The purpose of this paper is twofold: (1) to examine strengths and weaknesses of recently developed optimization methods for selecting radiation treatment beam angles and (2) to propose a simple and easy-to-use hybrid framework that overcomes some of the weaknesses observed with these methods. Six optimization methods—branch and bound (BB), simulated annealing (SA), genetic algorithms (GA), nested partitions (NP), branch and prune (BP), and local neighborhood search (LNS)—were evaluated. Our preliminary test results revealed that (1) one of the major drawbacks of the reported algorithms was the limited ability to find a good solution within a reasonable amount of time in a clinical setting, (2) all heuristic methods require selecting appropriate parameter values, which is a difficult chore, and (3) the LNS algorithm has the ability to identify good solutions only if provided with a good starting point. On the basis of these findings, we propose a unified beam angle selection framework that, through two sequential phases, consistently finds clinically relevant locally optimal solutions. Considering that different users may use different optimization approaches among those mentioned above, the first phase aims to quickly find a good feasible solution using SA, GA, NP, or BP. This solution is then used as a starting point for LNS to find a locally optimal solution. Experimental results using this unified method on five clinical cases show that it not only produces consistently good-quality treatment solutions but also alleviates the effort of selecting an initial set of appropriate parameter values that is required by all of the existing optimization methods. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Gino Lim & Laleh Kardar & Wenhua Cao, 2014. "A hybrid framework for optimizing beam angles in radiation therapy planning," Annals of Operations Research, Springer, vol. 217(1), pages 357-383, June.
  • Handle: RePEc:spr:annopr:v:217:y:2014:i:1:p:357-383:10.1007/s10479-014-1564-z
    DOI: 10.1007/s10479-014-1564-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-014-1564-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-014-1564-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eva Lee & Tim Fox & Ian Crocker, 2003. "Integer Programming Applied to Intensity-Modulated Radiation Therapy Treatment Planning," Annals of Operations Research, Springer, vol. 119(1), pages 165-181, March.
    2. Eglese, R. W., 1990. "Simulated annealing: A tool for operational research," European Journal of Operational Research, Elsevier, vol. 46(3), pages 271-281, June.
    3. Hao Howard Zhang & Leyuan Shi & Robert Meyer & Daryl Nazareth & Warren D'Souza, 2009. "Solving Beam-Angle Selection and Dose Optimization Simultaneously via High-Throughput Computing," INFORMS Journal on Computing, INFORMS, vol. 21(3), pages 427-444, August.
    4. Misic, V.V. & Aleman, D.M. & Sharpe, M.B., 2010. "Neighborhood search approaches to non-coplanar beam orientation optimization for total marrow irradiation using IMRT," European Journal of Operational Research, Elsevier, vol. 205(3), pages 522-527, September.
    5. Leyuan Shi & Sigurdur Ólafsson, 2000. "Nested Partitions Method for Global Optimization," Operations Research, INFORMS, vol. 48(3), pages 390-407, June.
    6. Dionne M. Aleman & H. Edwin Romeijn & James F. Dempsey, 2009. "A Response Surface Approach to Beam Orientation Optimization in Intensity-Modulated Radiation Therapy Treatment Planning," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 62-76, February.
    7. Lim, Gino J. & Cao, Wenhua, 2012. "A two-phase method for selecting IMRT treatment beam angles: Branch-and-Prune and local neighborhood search," European Journal of Operational Research, Elsevier, vol. 217(3), pages 609-618.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lim, Gino J. & Bard, Jonathan F., 2016. "Benders decomposition and an IP-based heuristic for selecting IMRT treatment beam anglesAuthor-Name: Lin, Sifeng," European Journal of Operational Research, Elsevier, vol. 251(3), pages 715-726.
    2. de Freitas, Juliana Campos & Cantane, Daniela Renata & Rocha, Humberto & Dias, Joana, 2024. "A multiobjective beam angle optimization framework for intensity-modulated radiation therapy," European Journal of Operational Research, Elsevier, vol. 318(1), pages 286-296.
    3. Guillermo Cabrera-Guerrero & Andrew J. Mason & Andrea Raith & Matthias Ehrgott, 2018. "Pareto local search algorithms for the multi-objective beam angle optimisation problem," Journal of Heuristics, Springer, vol. 24(2), pages 205-238, April.
    4. Marc C. Robini & Feng Yang & Yuemin Zhu, 2020. "A stochastic approach to full inverse treatment planning for charged-particle therapy," Journal of Global Optimization, Springer, vol. 77(4), pages 853-893, August.
    5. Breedveld, Sebastiaan & Craft, David & van Haveren, Rens & Heijmen, Ben, 2019. "Multi-criteria optimization and decision-making in radiotherapy," European Journal of Operational Research, Elsevier, vol. 277(1), pages 1-19.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Gino J. & Bard, Jonathan F., 2016. "Benders decomposition and an IP-based heuristic for selecting IMRT treatment beam anglesAuthor-Name: Lin, Sifeng," European Journal of Operational Research, Elsevier, vol. 251(3), pages 715-726.
    2. H. Rocha & J. Dias & B. Ferreira & M. Lopes, 2013. "Selection of intensity modulated radiation therapy treatment beam directions using radial basis functions within a pattern search methods framework," Journal of Global Optimization, Springer, vol. 57(4), pages 1065-1089, December.
    3. Guillermo Cabrera-Guerrero & Andrew J. Mason & Andrea Raith & Matthias Ehrgott, 2018. "Pareto local search algorithms for the multi-objective beam angle optimisation problem," Journal of Heuristics, Springer, vol. 24(2), pages 205-238, April.
    4. Marc C. Robini & Feng Yang & Yuemin Zhu, 2020. "A stochastic approach to full inverse treatment planning for charged-particle therapy," Journal of Global Optimization, Springer, vol. 77(4), pages 853-893, August.
    5. Lim, Gino J. & Cao, Wenhua, 2012. "A two-phase method for selecting IMRT treatment beam angles: Branch-and-Prune and local neighborhood search," European Journal of Operational Research, Elsevier, vol. 217(3), pages 609-618.
    6. Sauré, Antoine & Patrick, Jonathan & Tyldesley, Scott & Puterman, Martin L., 2012. "Dynamic multi-appointment patient scheduling for radiation therapy," European Journal of Operational Research, Elsevier, vol. 223(2), pages 573-584.
    7. Zhenyuan Liu & Lei Xiao & Jing Tian, 2016. "An activity-list-based nested partitions algorithm for resource-constrained project scheduling," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4744-4758, August.
    8. Joana Dias & Humberto Rocha & Brígida Ferreira & Maria Lopes, 2014. "A genetic algorithm with neural network fitness function evaluation for IMRT beam angle optimization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(3), pages 431-455, September.
    9. Yasin Gocgun, 2018. "Simulation-based approximate policy iteration for dynamic patient scheduling for radiation therapy," Health Care Management Science, Springer, vol. 21(3), pages 317-325, September.
    10. Meyr, H., 2000. "Simultaneous lotsizing and scheduling by combining local search with dual reoptimization," European Journal of Operational Research, Elsevier, vol. 120(2), pages 311-326, January.
    11. Lee, Loo Hay & Chew, Ek Peng & Manikam, Puvaneswari, 2006. "A general framework on the simulation-based optimization under fixed computing budget," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1828-1841, November.
    12. Ganesan, Viswanath Kumar & Sivakumar, Appa Iyer, 2006. "Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times," International Journal of Production Economics, Elsevier, vol. 103(2), pages 633-647, October.
    13. Eva K. Lee & Siddhartha Maheshwary & Jacquelyn Mason & William Glisson, 2006. "Large-Scale Dispensing for Emergency Response to Bioterrorism and Infectious-Disease Outbreak," Interfaces, INFORMS, vol. 36(6), pages 591-607, December.
    14. M Kumral & P A Dowd, 2005. "A simulated annealing approach to mine production scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 922-930, August.
    15. de Freitas, Juliana Campos & Cantane, Daniela Renata & Rocha, Humberto & Dias, Joana, 2024. "A multiobjective beam angle optimization framework for intensity-modulated radiation therapy," European Journal of Operational Research, Elsevier, vol. 318(1), pages 286-296.
    16. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    17. Eva K. Lee, 2004. "Generating Cutting Planes for Mixed Integer Programming Problems in a Parallel Computing Environment," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 3-26, February.
    18. Samer Hanoun & Asim Bhatti & Doug Creighton & Saeid Nahavandi & Phillip Crothers & Celeste Gloria Esparza, 2016. "Target coverage in camera networks for manufacturing workplaces," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1221-1235, December.
    19. Regnier-Coudert, Olivier & McCall, John & Ayodele, Mayowa & Anderson, Steven, 2016. "Truck and trailer scheduling in a real world, dynamic and heterogeneous context," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 389-408.
    20. Lingxuan Liu & Leyuan Shi, 2019. "Simulation Optimization on Complex Job Shop Scheduling with Non-Identical Job Sizes," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(05), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:217:y:2014:i:1:p:357-383:10.1007/s10479-014-1564-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.