IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v302y2022i1p270-279.html
   My bibliography  Save this article

Learning target-based preferences through additive models: An application in radiotherapy treatment planning

Author

Listed:
  • Dias, Luis C.
  • Dias, Joana
  • Ventura, Tiago
  • Rocha, Humberto
  • Ferreira, Brígida
  • Khouri, Leila
  • Lopes, Maria do Carmo

Abstract

This article presents a new Multi-Criteria Decision Aiding preference disaggregation method based on an asymmetric target-based model. The decision maker's preferences are elicited considering the choices made given a set of comparisons among pairs of solutions (the stimuli). It is assumed that the decision maker has a reference value (target) for the stimulus. Solutions that do not comply with this reference value for some of the criteria dimensions considered will be penalized, and an inferred weight is associated with each dimension to calculate a penalty score for each solution. One of the differentiating features of the proposed model when compared with other existing models is the fact that only solutions that do not meet the target are penalized. The target is not interpreted as an ideal solution, but as a set of threshold values that should be taken into account when choosing a solution. The proposed approach was applied to the problem of choosing radiotherapy treatment plans, using a set of retrospective cancer cases treated at the Portuguese Oncology Institute of Coimbra. Using paired comparison choices made by one radiation oncologist, the preference model was built and was tested with in-sample and out-of-sample data. It is possible to conclude that the preference model is capable of representing the radiation oncologist's preferences, presenting small mean errors and leading, most of the time, to the same treatment plan chosen by the radiation oncologist.

Suggested Citation

  • Dias, Luis C. & Dias, Joana & Ventura, Tiago & Rocha, Humberto & Ferreira, Brígida & Khouri, Leila & Lopes, Maria do Carmo, 2022. "Learning target-based preferences through additive models: An application in radiotherapy treatment planning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 270-279.
  • Handle: RePEc:eee:ejores:v:302:y:2022:i:1:p:270-279
    DOI: 10.1016/j.ejor.2021.12.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721010183
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.12.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Breedveld, Sebastiaan & Craft, David & van Haveren, Rens & Heijmen, Ben, 2019. "Multi-criteria optimization and decision-making in radiotherapy," European Journal of Operational Research, Elsevier, vol. 277(1), pages 1-19.
    2. Jacquet-Lagreze, E. & Siskos, J., 1982. "Assessing a set of additive utility functions for multicriteria decision-making, the UTA method," European Journal of Operational Research, Elsevier, vol. 10(2), pages 151-164, June.
    3. Mousseau, Vincent & Dias, Luis, 2004. "Valued outranking relations in ELECTRE providing manageable disaggregation procedures," European Journal of Operational Research, Elsevier, vol. 156(2), pages 467-482, July.
    4. Markus Hartikainen & Kaisa Miettinen & Margaret Wiecek, 2012. "PAINT: Pareto front interpolation for nonlinear multiobjective optimization," Computational Optimization and Applications, Springer, vol. 52(3), pages 845-867, July.
    5. Nikolaos F. Matsatsinis & Evangelos Grigoroudis & Eleftherios Siskos, 2018. "Disaggregation Approach to Value Elicitation," International Series in Operations Research & Management Science, in: Luis C. Dias & Alec Morton & John Quigley (ed.), Elicitation, chapter 0, pages 313-348, Springer.
    6. Lim, Gino J. & Bard, Jonathan F., 2016. "Benders decomposition and an IP-based heuristic for selecting IMRT treatment beam anglesAuthor-Name: Lin, Sifeng," European Journal of Operational Research, Elsevier, vol. 251(3), pages 715-726.
    7. Robert F. Bordley & Craig W. Kirkwood, 2004. "Multiattribute Preference Analysis with Performance Targets," Operations Research, INFORMS, vol. 52(6), pages 823-835, December.
    8. Lim, Gino J. & Kardar, Laleh & Ebrahimi, Saba & Cao, Wenhua, 2020. "A risk-based modeling approach for radiation therapy treatment planning under tumor shrinkage uncertainty," European Journal of Operational Research, Elsevier, vol. 280(1), pages 266-278.
    9. Angilella, Silvia & Greco, Salvatore & Matarazzo, Benedetto, 2010. "Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral," European Journal of Operational Research, Elsevier, vol. 201(1), pages 277-288, February.
    10. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Jacquet-Lagreze, Eric & Siskos, Yannis, 2001. "Preference disaggregation: 20 years of MCDA experience," European Journal of Operational Research, Elsevier, vol. 130(2), pages 233-245, April.
    12. Dursun, Pınar & Taşkın, Z. Caner & Altınel, İ. Kuban, 2019. "The determination of optimal treatment plans for Volumetric Modulated Arc Therapy (VMAT)," European Journal of Operational Research, Elsevier, vol. 272(1), pages 372-388.
    13. Sobrie, Olivier & Gillis, Nicolas & Mousseau, Vincent & Pirlot, Marc, 2018. "UTA-poly and UTA-splines: Additive value functions with polynomial marginals," European Journal of Operational Research, Elsevier, vol. 264(2), pages 405-418.
    14. Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu & Mao, Xiaoxin & Wang, Yao, 2020. "A preference learning framework for multiple criteria sorting with diverse additive value models and valued assignment examples," European Journal of Operational Research, Elsevier, vol. 286(3), pages 963-985.
    15. Hadas, Yuval & Nahum, Oren E., 2016. "Urban bus network of priority lanes: A combined multi-objective, multi-criteria and group decision-making approach," Transport Policy, Elsevier, vol. 52(C), pages 186-196.
    16. V. Srinivasan & Allan Shocker, 1973. "Linear programming techniques for multidimensional analysis of preferences," Psychometrika, Springer;The Psychometric Society, vol. 38(3), pages 337-369, September.
    17. Emma Stubington & Matthias Ehrgott & Glyn Shentall & Omid Nohadani, 2019. "Evaluating the Quality of Radiotherapy Treatment Plans for Prostate Cancer," International Series in Operations Research & Management Science, in: Sandra Huber & Martin Josef Geiger & Adiel Teixeira de Almeida (ed.), Multiple Criteria Decision Making and Aiding, pages 41-66, Springer.
    18. Ghaderi, Mohammad & Ruiz, Francisco & Agell, Núria, 2017. "A linear programming approach for learning non-monotonic additive value functions in multiple criteria decision aiding," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1073-1084.
    19. H. Rocha & J. Dias & B. Ferreira & M. Lopes, 2013. "Selection of intensity modulated radiation therapy treatment beam directions using radial basis functions within a pattern search methods framework," Journal of Global Optimization, Springer, vol. 57(4), pages 1065-1089, December.
    20. Zaghian, Maryam & Lim, Gino J. & Khabazian, Azin, 2018. "A chance-constrained programming framework to handle uncertainties in radiation therapy treatment planning," European Journal of Operational Research, Elsevier, vol. 266(2), pages 736-745.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Xingli & Liao, Huchang, 2023. "A compensatory value function for modeling risk tolerance and criteria interactions in preference disaggregation," Omega, Elsevier, vol. 117(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kadziński, Miłosz & Wójcik, Michał & Ciomek, Krzysztof, 2022. "Review and experimental comparison of ranking and choice procedures for constructing a univocal recommendation in a preference disaggregation setting," Omega, Elsevier, vol. 113(C).
    2. Luis C. Dias & Gabriela D. Oliveira & Paula Sarabando, 2021. "Choice-based preference disaggregation concerning vehicle technologies," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 177-200, March.
    3. Gehrlein, Jonas & Miebs, Grzegorz & Brunelli, Matteo & Kadziński, Miłosz, 2023. "An active preference learning approach to aid the selection of validators in blockchain environments," Omega, Elsevier, vol. 118(C).
    4. Cinelli, Marco & Kadziński, Miłosz & Miebs, Grzegorz & Gonzalez, Michael & Słowiński, Roman, 2022. "Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 633-651.
    5. Kadziński, MiŁosz & Greco, Salvatore & SŁowiński, Roman, 2012. "Extreme ranking analysis in robust ordinal regression," Omega, Elsevier, vol. 40(4), pages 488-501.
    6. Guo, Mengzhuo & Zhang, Qingpeng & Liao, Xiuwu & Chen, Frank Youhua & Zeng, Daniel Dajun, 2021. "A hybrid machine learning framework for analyzing human decision-making through learning preferences," Omega, Elsevier, vol. 101(C).
    7. Grigoroudis, Evangelos & Noel, Laurent & Galariotis, Emilios & Zopounidis, Constantin, 2021. "An ordinal regression approach for analyzing consumer preferences in the art market," European Journal of Operational Research, Elsevier, vol. 290(2), pages 718-733.
    8. Zopounidis, Constantin & Doumpos, Michael, 2002. "Multicriteria classification and sorting methods: A literature review," European Journal of Operational Research, Elsevier, vol. 138(2), pages 229-246, April.
    9. Khaled Belahcène & Vincent Mousseau & Wassila Ouerdane & Marc Pirlot & Olivier Sobrie, 2023. "Multiple criteria sorting models and methods—Part I: survey of the literature," 4OR, Springer, vol. 21(1), pages 1-46, March.
    10. Ru, Zice & Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu, 2023. "Probabilistic ordinal regression methods for multiple criteria sorting admitting certain and uncertain preferences," European Journal of Operational Research, Elsevier, vol. 311(2), pages 596-616.
    11. Arcidiacono, Sally Giuseppe & Corrente, Salvatore & Greco, Salvatore, 2021. "Robust stochastic sorting with interacting criteria hierarchically structured," European Journal of Operational Research, Elsevier, vol. 292(2), pages 735-754.
    12. Salvatore Corrente & Salvatore Greco & Benedetto Matarazzo & Roman Słowiński, 2016. "Robust ordinal regression for decision under risk and uncertainty," Journal of Business Economics, Springer, vol. 86(1), pages 55-83, January.
    13. Ghaderi, Mohammad & Kadziński, Miłosz, 2021. "Incorporating uncovered structural patterns in value functions construction," Omega, Elsevier, vol. 99(C).
    14. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore, 2015. "Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 172-182.
    15. Doumpos, Michael & Zopounidis, Constantin, 2011. "Preference disaggregation and statistical learning for multicriteria decision support: A review," European Journal of Operational Research, Elsevier, vol. 209(3), pages 203-214, March.
    16. Guo, Mengzhuo & Liao, Xiuwu & Liu, Jiapeng & Zhang, Qingpeng, 2020. "Consumer preference analysis: A data-driven multiple criteria approach integrating online information," Omega, Elsevier, vol. 96(C).
    17. Wachowicz, Tomasz & Roszkowska, Ewa, 2022. "Can holistic declaration of preferences improve a negotiation offer scoring system?," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1018-1032.
    18. Liu, Jiapeng & Liao, Xiuwu & Kadziński, Miłosz & Słowiński, Roman, 2019. "Preference disaggregation within the regularization framework for sorting problems with multiple potentially non-monotonic criteria," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1071-1089.
    19. Tlili, Ali & Belahcène, Khaled & Khaled, Oumaima & Mousseau, Vincent & Ouerdane, Wassila, 2022. "Learning non-compensatory sorting models using efficient SAT/MaxSAT formulations," European Journal of Operational Research, Elsevier, vol. 298(3), pages 979-1006.
    20. Angilella, Silvia & Greco, Salvatore & Matarazzo, Benedetto, 2010. "Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral," European Journal of Operational Research, Elsevier, vol. 201(1), pages 277-288, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:302:y:2022:i:1:p:270-279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.