IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v117y2018icp295-306.html
   My bibliography  Save this article

Probabilistic evaluation of the long-term power system resource adequacy: The Greek case

Author

Listed:
  • Simoglou, Christos K.
  • Bakirtzis, Emmanouil A.
  • Biskas, Pandelis N.
  • Bakirtzis, Anastasios G.

Abstract

This paper deals with the probabilistic evaluation of the long-term resource adequacy of an interconnected power system. An integrated software tool that solves the long-term scheduling problem using a sophisticated unit commitment model is employed, while both traditional capacity and flexibility adequacy concepts are addressed. A novel methodology to assess the flexibility adequacy using the operational power system schedule is presented. Multi-year simulations of the Greek interconnected power system on an hour-by-hour basis for the forthcoming 10-year study horizon (period 2018–2027) under a set of scenarios regarding the future operating conditions have been performed, providing the key operational data for the calculation of all probabilistic indicators. Test results indicate that the existence of all currently available thermal generating units as well as the timely realization of all scheduled construction plans is of utmost importance for the long-term secure and reliable operation of the Greek interconnected power system. In a more generalized framework, the ambitious EU goals regarding decarbonization and increasing RES shares in electricity generation should be accompanied by detailed studies in order to ensure that no resource adequacy problems will arise in the near future due to the massive withdrawal of conventional base-load and, possibly, flexible generating units.

Suggested Citation

  • Simoglou, Christos K. & Bakirtzis, Emmanouil A. & Biskas, Pandelis N. & Bakirtzis, Anastasios G., 2018. "Probabilistic evaluation of the long-term power system resource adequacy: The Greek case," Energy Policy, Elsevier, vol. 117(C), pages 295-306.
  • Handle: RePEc:eee:enepol:v:117:y:2018:i:c:p:295-306
    DOI: 10.1016/j.enpol.2018.02.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518301241
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.02.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sadeghi, Hadi & Rashidinejad, Masoud & Abdollahi, Amir, 2017. "A comprehensive sequential review study through the generation expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1369-1394.
    2. Simoglou, Christos K. & Biskas, Pandelis N. & Vagropoulos, Stylianos I. & Bakirtzis, Anastasios G., 2014. "Electricity market models and RES integration: The Greek case," Energy Policy, Elsevier, vol. 67(C), pages 531-542.
    3. Koltsaklis, Nikolaos E. & Georgiadis, Michael C., 2015. "A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints," Applied Energy, Elsevier, vol. 158(C), pages 310-331.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tapetado, Pablo & Usaola, Julio, 2019. "Capacity credits of wind and solar generation: The Spanish case," Renewable Energy, Elsevier, vol. 143(C), pages 164-175.
    2. Zhong, Zhiming & Fan, Neng & Wu, Lei, 2024. "Multistage Stochastic optimization for mid-term integrated generation and maintenance scheduling of cascaded hydroelectric system with renewable energy uncertainty," European Journal of Operational Research, Elsevier, vol. 318(1), pages 179-199.
    3. Mladen Zeljko & Marko Aunedi & Goran Slipac & Dražen Jakšić, 2020. "Applications of Wien Automatic System Planning (WASP) Model to Non-Standard Power System Expansion Problems," Energies, MDPI, vol. 13(6), pages 1-17, March.
    4. Christos K. Simoglou & Pandelis N. Biskas, 2023. "Capacity Mechanisms in Europe and the US: A Comparative Analysis and a Real-Life Application for Greece," Energies, MDPI, vol. 16(2), pages 1-32, January.
    5. Abadie, Luis Ma & Chamorro, José M., 2019. "Physical adequacy of a power generation system: The case of Spain in the long term," Energy, Elsevier, vol. 166(C), pages 637-652.
    6. Gao, Jianwei & Ma, Zeyang & Guo, Fengjia, 2019. "The influence of demand response on wind-integrated power system considering participation of the demand side," Energy, Elsevier, vol. 178(C), pages 723-738.
    7. Tsai, Chen-Hao & Figueroa-Acevedo, Armando & Boese, Maire & Li, Yifan & Mohan, Nihal & Okullo, James & Heath, Brandon & Bakke, Jordan, 2020. "Challenges of planning for high renewable futures: Experience in the U.S. midcontinent electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).
    2. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    3. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    4. Alphonse Hakizimana & Joseph K. Scott, 2017. "Differentiability Conditions for Stochastic Hybrid Systems with Application to the Optimal Design of Microgrids," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 658-682, May.
    5. Vakilifard, Negar & A. Bahri, Parisa & Anda, Martin & Ho, Goen, 2019. "An interactive planning model for sustainable urban water and energy supply," Applied Energy, Elsevier, vol. 235(C), pages 332-345.
    6. Qingtao Li & Jianxue Wang & Yao Zhang & Yue Fan & Guojun Bao & Xuebin Wang, 2020. "Multi-Period Generation Expansion Planning for Sustainable Power Systems to Maximize the Utilization of Renewable Energy Sources," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    7. Li, Can & Conejo, Antonio J. & Liu, Peng & Omell, Benjamin P. & Siirola, John D. & Grossmann, Ignacio E., 2022. "Mixed-integer linear programming models and algorithms for generation and transmission expansion planning of power systems," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1071-1082.
    8. Buchholz, Stefanie & Gamst, Mette & Pisinger, David, 2020. "Sensitivity analysis of time aggregation techniques applied to capacity expansion energy system models," Applied Energy, Elsevier, vol. 269(C).
    9. Abdin, Islam F. & Zio, Enrico, 2018. "An integrated framework for operational flexibility assessment in multi-period power system planning with renewable energy production," Applied Energy, Elsevier, vol. 222(C), pages 898-914.
    10. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    11. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Irawan, Chandra Ade & Jones, Dylan & Hofman, Peter S. & Zhang, Lina, 2023. "Integrated strategic energy mix and energy generation planning with multiple sustainability criteria and hierarchical stakeholders," European Journal of Operational Research, Elsevier, vol. 308(2), pages 864-883.
    13. Koltsaklis, Nikolaos E. & Nazos, Konstantinos, 2017. "A stochastic MILP energy planning model incorporating power market dynamics," Applied Energy, Elsevier, vol. 205(C), pages 1364-1383.
    14. Tong Koecklin, Manuel & Fitiwi, Desta & de Carolis, Joseph F. & Curtis, John, 2020. "Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland," Papers WP653, Economic and Social Research Institute (ESRI).
    15. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    16. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    17. Li, Yuan & Zhou, You & Yi, Bo-Wen & Wang, Ya, 2021. "Impacts of the coal resource tax on the electric power industry in China: A multi-regional comprehensive analysis," Resources Policy, Elsevier, vol. 70(C).
    18. Afful-Dadzie, Anthony & Afful-Dadzie, Eric & Awudu, Iddrisu & Banuro, Joseph Kwaku, 2017. "Power generation capacity planning under budget constraint in developing countries," Applied Energy, Elsevier, vol. 188(C), pages 71-82.
    19. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    20. Rodgers, Mark & Coit, David & Felder, Frank & Carlton, Annmarie, 2019. "Assessing the effects of power grid expansion on human health externalities," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 92-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:117:y:2018:i:c:p:295-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.