IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v29y2023i2d10.1007_s10732-023-09513-y.html
   My bibliography  Save this article

An efficient scenario penalization matheuristic for a stochastic scheduling problem

Author

Listed:
  • Michel Vasquez

    (Univ. Montpellier, IMT Mines Ales)

  • Mirsad Buljubasic

    (Univ. Montpellier, IMT Mines Ales)

  • Saïd Hanafi

    (INSA Hauts-de-France/Univ. Polytechnique Hauts-de-France)

Abstract

We propose a new scenario penalization matheuristic for a stochastic scheduling problem based on both mathematical programming models and local search methods. The application considered is an NP-hard problem expressed as a risk minimization model involving quantiles related to value at risk which is formulated as a non-linear binary optimization problem with linear constraints. The proposed matheuritic involves a parameterization of the objective function that is progressively modified to generate feasible solutions which are improved by local search procedure. This matheuristic is related to the ghost image process approach by Glover (Comput Oper Res 21(8):801–822, 1994) which is a highly general framework for heuristic search optimization. This approach won the first prize in the senior category of the EURO/ROADEF 2020 challenge. Experimental results are presented which demonstrate the effectiveness of our approach on large instances provided by the French electricity transmission network RTE.

Suggested Citation

  • Michel Vasquez & Mirsad Buljubasic & Saïd Hanafi, 2023. "An efficient scenario penalization matheuristic for a stochastic scheduling problem," Journal of Heuristics, Springer, vol. 29(2), pages 383-408, June.
  • Handle: RePEc:spr:joheur:v:29:y:2023:i:2:d:10.1007_s10732-023-09513-y
    DOI: 10.1007/s10732-023-09513-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-023-09513-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-023-09513-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mirsad Buljubašić & Michel Vasquez & Haris Gavranović, 2018. "Two-phase heuristic for SNCF rolling stock problem," Annals of Operations Research, Springer, vol. 271(2), pages 1107-1129, December.
    2. Pierre Hansen & Nenad Mladenović & Raca Todosijević & Saïd Hanafi, 2017. "Variable neighborhood search: basics and variants," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 423-454, September.
    3. Sharpe, William F., 1971. "A Linear Programming Approximation for the General Portfolio Analysis Problem," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 6(5), pages 1263-1275, December.
    4. Gendron, Bernard & Hanafi, Saïd & Todosijević, Raca, 2018. "Matheuristics based on iterative linear programming and slope scaling for multicommodity capacitated fixed charge network design," European Journal of Operational Research, Elsevier, vol. 268(1), pages 70-81.
    5. Haris Gavranović & Mirsad Buljubašić, 2016. "An efficient local search with noising strategy for Google Machine Reassignment problem," Annals of Operations Research, Springer, vol. 242(1), pages 19-31, July.
    6. Hideki Hashimoto & Sylvain Boussier & Michel Vasquez & Christophe Wilbaut, 2011. "A GRASP-based approach for technicians and interventions scheduling for telecommunications," Annals of Operations Research, Springer, vol. 183(1), pages 143-161, March.
    7. Froger, Aurélien & Gendreau, Michel & Mendoza, Jorge E. & Pinson, Éric & Rousseau, Louis-Martin, 2016. "Maintenance scheduling in the electricity industry: A literature review," European Journal of Operational Research, Elsevier, vol. 251(3), pages 695-706.
    8. Benati, Stefano & Rizzi, Romeo, 2007. "A mixed integer linear programming formulation of the optimal mean/Value-at-Risk portfolio problem," European Journal of Operational Research, Elsevier, vol. 176(1), pages 423-434, January.
    9. Bernard Gendron & Jean-Yves Potvin & Patrick Soriano, 2003. "A Tabu Search with Slope Scaling for the Multicommodity Capacitated Location Problem with Balancing Requirements," Annals of Operations Research, Springer, vol. 122(1), pages 193-217, September.
    10. David L. Woodruff, 1995. "Ghost Image Processing for Minimum Covariance Determinants," INFORMS Journal on Computing, INFORMS, vol. 7(4), pages 468-473, November.
    11. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez, Jesús A. & Anjos, Miguel F. & Côté, Pascal & Desaulniers, Guy, 2021. "Accelerating Benders decomposition for short-term hydropower maintenance scheduling," European Journal of Operational Research, Elsevier, vol. 289(1), pages 240-253.
    2. Polak, George G. & Rogers, David F. & Sweeney, Dennis J., 2010. "Risk management strategies via minimax portfolio optimization," European Journal of Operational Research, Elsevier, vol. 207(1), pages 409-419, November.
    3. Jann Michael Weinand & Kenneth Sorensen & Pablo San Segundo & Max Kleinebrahm & Russell McKenna, 2020. "Research trends in combinatorial optimisation," Papers 2012.01294, arXiv.org.
    4. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    5. Ke Zhou & Jiangjun Gao & Duan Li & Xiangyu Cui, 2017. "Dynamic mean–VaR portfolio selection in continuous time," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1631-1643, October.
    6. Wojtek Michalowski & Włodzimierz Ogryczak, 2001. "Extending the MAD portfolio optimization model to incorporate downside risk aversion," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(3), pages 185-200, April.
    7. Esmaeilbeigi, Rasul & Mak-Hau, Vicky & Yearwood, John & Nguyen, Vivian, 2022. "The multiphase course timetabling problem," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1098-1119.
    8. Lin, Chang-Chun, 2009. "Comments on "A mixed integer linear programming formulation of the optimal mean/Value-at-Risk portfolio problem"," European Journal of Operational Research, Elsevier, vol. 194(1), pages 339-341, April.
    9. Bao, Te & Diks, Cees & Li, Hao, 2018. "A generalized CAPM model with asymmetric power distributed errors with an application to portfolio construction," Economic Modelling, Elsevier, vol. 68(C), pages 611-621.
    10. Özgün Elçi & John Hooker, 2022. "Stochastic Planning and Scheduling with Logic-Based Benders Decomposition," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2428-2442, September.
    11. Agarwal, Y.K. & Aneja, Y.P. & Jayaswal, Sachin, 2022. "Directed fixed charge multicommodity network design: A cutting plane approach using polar duality," European Journal of Operational Research, Elsevier, vol. 299(1), pages 118-136.
    12. Fouad Ben Abdelaziz & Ray Saadaoui Mallek, 2018. "Multi-criteria optimal stopping methods applied to the portfolio optimisation problem," Annals of Operations Research, Springer, vol. 267(1), pages 29-46, August.
    13. Gokturk Poyrazoglu & HyungSeon Oh, 2019. "Co-optimization of Transmission Maintenance Scheduling and Production Cost Minimization," Energies, MDPI, vol. 12(15), pages 1-18, July.
    14. Di, Zhen & Yang, Lixing & Shi, Jungang & Zhou, Housheng & Yang, Kai & Gao, Ziyou, 2022. "Joint optimization of carriage arrangement and flow control in a metro-based underground logistics system," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 1-23.
    15. Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
    16. Andrea Bacchiocchi & Sebastian Ille & Germana Giombini, 2023. "The effects of a green monetary policy on firms financing costs," Working Papers 2301, University of Urbino Carlo Bo, Department of Economics, Society & Politics - Scientific Committee - L. Stefanini & G. Travaglini, revised 2023.
    17. Thomas Bittar & Pierre Carpentier & Jean-Philippe Chancelier & Jérôme Lonchampt, 2022. "A decomposition method by interaction prediction for the optimization of maintenance scheduling," Annals of Operations Research, Springer, vol. 316(1), pages 229-267, September.
    18. Xueting Cui & Xiaoling Sun & Shushang Zhu & Rujun Jiang & Duan Li, 2018. "Portfolio Optimization with Nonparametric Value at Risk: A Block Coordinate Descent Method," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 454-471, August.
    19. Schmid, Nico André & Limère, Veronique & Raa, Birger, 2021. "Mixed model assembly line feeding with discrete location assignments and variable station space," Omega, Elsevier, vol. 102(C).
    20. Xiao, Helu & Zhou, Zhongbao & Ren, Teng & Liu, Wenbin, 2022. "Estimation of portfolio efficiency in nonconvex settings: A free disposal hull estimator with non-increasing returns to scale," Omega, Elsevier, vol. 111(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:29:y:2023:i:2:d:10.1007_s10732-023-09513-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.