IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2787-d365787.html
   My bibliography  Save this article

A Review of Optimization Algorithms in Solving Hydro Generation Scheduling Problems

Author

Listed:
  • Ali Thaeer Hammid

    (Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja’afar Al-Sadiq University, Baghdad 10012, Iraq
    Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang, Pahang, Pekan 26600, Malaysia)

  • Omar I. Awad

    (State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China)

  • Mohd Herwan Sulaiman

    (Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang, Pahang, Pekan 26600, Malaysia)

  • Saraswathy Shamini Gunasekaran

    (College of Computing and Informatics, Universiti Tenaga Nasional, Selangor, Kajang 43000, Malaysia)

  • Salama A. Mostafa

    (Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Johor, Batu Pahat 86400, Malaysia)

  • Nallapaneni Manoj Kumar

    (School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China)

  • Bashar Ahmad Khalaf

    (College of Basic Education, University of Diyala, Diyala 32001, Iraq)

  • Yasir Amer Al-Jawhar

    (Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Batu Pahat 86400, Malaysia
    Iraqi Ministry of Communications (M.O.C.), Mamoon, Baghdad 10012, Iraq)

  • Raed Abdulkareem Abdulhasan

    (Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Batu Pahat 86400, Malaysia)

Abstract

The optimal generation scheduling (OGS) of hydropower units holds an important position in electric power systems, which is significantly investigated as a research issue. Hydropower has a slight social and ecological effect when compared with other types of sustainable power source. The target of long-, mid-, and short-term hydro scheduling (LMSTHS) problems is to optimize the power generation schedule of the accessible hydropower units, which generate maximum energy by utilizing the available potential during a specific period. Numerous traditional optimization procedures are first presented for making a solution to the LMSTHS problem. Lately, various optimization approaches, which have been assigned as a procedure based on experiences, have been executed to get the optimal solution of the generation scheduling of hydro systems. This article offers a complete survey of the implementation of various methods to get the OGS of hydro systems by examining the executed methods from various perspectives. Optimal solutions obtained by a collection of meta-heuristic optimization methods for various experience cases are established, and the presented methods are compared according to the case study, limitation of parameters, optimization techniques, and consideration of the main goal. Previous studies are mostly focused on hydro scheduling that is based on a reservoir of hydropower plants. Future study aspects are also considered, which are presented as the key issue surrounding the LMSTHS problem.

Suggested Citation

  • Ali Thaeer Hammid & Omar I. Awad & Mohd Herwan Sulaiman & Saraswathy Shamini Gunasekaran & Salama A. Mostafa & Nallapaneni Manoj Kumar & Bashar Ahmad Khalaf & Yasir Amer Al-Jawhar & Raed Abdulkareem A, 2020. "A Review of Optimization Algorithms in Solving Hydro Generation Scheduling Problems," Energies, MDPI, vol. 13(11), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2787-:d:365787
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2787/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2787/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pérez-Díaz, Juan I. & Wilhelmi, José R., 2010. "Assessment of the economic impact of environmental constraints on short-term hydropower plant operation," Energy Policy, Elsevier, vol. 38(12), pages 7960-7970, December.
    2. He, Yao-Yao & Zhou, Jian-Zhong & Xiang, Xiu-Qiao & Chen, Heng & Qin, Hui, 2009. "Comparison of different chaotic maps in particle swarm optimization algorithm for long-term cascaded hydroelectric system scheduling," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3169-3176.
    3. Changming Ji & Chuangang Li & Boquan Wang & Minghao Liu & Liping Wang, 2017. "Multi-Stage Dynamic Programming Method for Short-Term Cascade Reservoirs Optimal Operation with Flow Attenuation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4571-4586, November.
    4. Sheng-li Liao & Ben-xi Liu & Chun-tian Cheng & Zhi-fu Li & Xin-yu Wu, 2017. "Long-Term Generation Scheduling of Hydropower System Using Multi-Core Parallelization of Particle Swarm Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2791-2807, July.
    5. Chang, Jianxia & Li, Yunyun & Yuan, Meng & Wang, Yimin, 2017. "Efficiency evaluation of hydropower station operation: A case study of Longyangxia station in the Yellow River, China," Energy, Elsevier, vol. 135(C), pages 23-31.
    6. Yah, Nor F. & Oumer, Ahmed N. & Idris, Mat S., 2017. "Small scale hydro-power as a source of renewable energy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 228-239.
    7. Binama, Maxime & Su, Wen-Tao & Li, Xiao-Bin & Li, Feng-Chen & Wei, Xian-Zhu & An, Shi, 2017. "Investigation on pump as turbine (PAT) technical aspects for micro hydropower schemes: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 148-179.
    8. Yuan, Xiaohui & Yuan, Yanbin & Zhang, Yongchuan, 2002. "A hybrid chaotic genetic algorithm for short-term hydro system scheduling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(4), pages 319-327.
    9. Sharma, R.N. & Chand, Narottam & Sharma, Veena & Yadav, Deepika, 2015. "Decision support system for operation, scheduling and optimization of hydro power plant in Jammu and Kashmir region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1099-1113.
    10. Catalão, J.P.S. & Pousinho, H.M.I. & Contreras, J., 2012. "Optimal hydro scheduling and offering strategies considering price uncertainty and risk management," Energy, Elsevier, vol. 37(1), pages 237-244.
    11. Liu Yuan & Jianzhong Zhou, 2017. "Self-Optimization System Dynamics Simulation of Real-Time Short Term Cascade Hydropower System Considering Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2127-2140, May.
    12. Nazari-Heris, M. & Mohammadi-Ivatloo, B. & B. Gharehpetian, G., 2017. "Short-term scheduling of hydro-based power plants considering application of heuristic algorithms: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 116-129.
    13. Francisco Javier Ramos-Real & Josue Barrera-Santana & Alfredo A Ramírez-Díaz & Yannick Perez, 2018. "Interconnecting isolated electrical systems. The case of Canary Islands," Post-Print hal-01870904, HAL.
    14. Fleten, Stein-Erik & Haugstvedt, Daniel & Steinsbø, Jens Arne & Belsnes, Michael & Fleischmann, Franziska, 2011. "Bidding hydropower generation: Integrating short- and long-term scheduling," MPRA Paper 44450, University Library of Munich, Germany.
    15. Fabio Bignucolo & Roberto Caldon & Massimiliano Coppo & Fabio Pasut & Martino Pettinà, 2017. "Integration of Lithium-Ion Battery Storage Systems in Hydroelectric Plants for Supplying Primary Control Reserve," Energies, MDPI, vol. 10(1), pages 1-22, January.
    16. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Wu, Xin-yu, 2017. "Optimization of hydropower system operation by uniform dynamic programming for dimensionality reduction," Energy, Elsevier, vol. 134(C), pages 718-730.
    17. Guisández, Ignacio & Pérez-Díaz, Juan I. & Wilhelmi, José R., 2013. "Assessment of the economic impact of environmental constraints on annual hydropower plant operation," Energy Policy, Elsevier, vol. 61(C), pages 1332-1343.
    18. Chun-Tian Cheng & Wen-Chuan Wang & Dong-Mei Xu & K. Chau, 2008. "Optimizing Hydropower Reservoir Operation Using Hybrid Genetic Algorithm and Chaos," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 895-909, July.
    19. Hongling, Liu & Chuanwen, Jiang & Yan, Zhang, 2008. "A review on risk-constrained hydropower scheduling in deregulated power market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1465-1475, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhong, Zhiming & Fan, Neng & Wu, Lei, 2024. "Multistage Stochastic optimization for mid-term integrated generation and maintenance scheduling of cascaded hydroelectric system with renewable energy uncertainty," European Journal of Operational Research, Elsevier, vol. 318(1), pages 179-199.
    2. Yoan Villeneuve & Sara Séguin & Abdellah Chehri, 2023. "AI-Based Scheduling Models, Optimization, and Prediction for Hydropower Generation: Opportunities, Issues, and Future Directions," Energies, MDPI, vol. 16(8), pages 1-27, April.
    3. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    4. Panagiotis I. Bakanos & Konstantinos L. Katsifarakis, 2020. "Optimizing Current and Future Hydroelectric Energy Production and Water Uses of the Complex Multi-Reservoir System in the Aliakmon River, Greece," Energies, MDPI, vol. 13(24), pages 1-23, December.
    5. Sunil Kumar Mishra & Amitkumar V. Jha & Bhargav Appasani & Nicu Bizon & Phatiphat Thounthong & Pongsiri Mungporn, 2023. "Ocean Wave Energy Control Using Aquila Optimization Technique," Energies, MDPI, vol. 16(11), pages 1-21, June.
    6. David Lucas dos Santos Abreu & Erlon Cristian Finardi, 2022. "Continuous Piecewise Linear Approximation of Plant-Based Hydro Production Function for Generation Scheduling Problems," Energies, MDPI, vol. 15(5), pages 1-23, February.
    7. Cui Zheyuan & Ali Thaeer Hammid & Ali Noori Kareem & Mingxin Jiang & Muamer N. Mohammed & Nallapaneni Manoj Kumar, 2021. "A Rigid Cuckoo Search Algorithm for Solving Short-Term Hydrothermal Scheduling Problem," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
    8. Avesani, Diego & Zanfei, Ariele & Di Marco, Nicola & Galletti, Andrea & Ravazzolo, Francesco & Righetti, Maurizio & Majone, Bruno, 2022. "Short-term hydropower optimization driven by innovative time-adapting econometric model," Applied Energy, Elsevier, vol. 310(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Akshita & Kumar, Arun & Khatod, Dheeraj Kumar, 2019. "Optimized scheduling of hydropower with increase in solar and wind installations," Energy, Elsevier, vol. 183(C), pages 716-732.
    2. Ak, Mümtaz & Kentel, Elcin & Savasaneril, Secil, 2019. "Quantifying the revenue gain of operating a cascade hydropower plant system as a pumped-storage hydropower system," Renewable Energy, Elsevier, vol. 139(C), pages 739-752.
    3. Li, Huanhuan & Chen, Diyi & Arzaghi, Ehsan & Abbassi, Rouzbeh & Xu, Beibei & Patelli, Edoardo & Tolo, Silvia, 2018. "Safety assessment of hydro-generating units using experiments and grey-entropy correlation analysis," Energy, Elsevier, vol. 165(PA), pages 222-234.
    4. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2018. "Optimal allocation of hydropower and hybrid electricity injected from inter-regional transmission lines among multiple receiving-end power grids in China," Energy, Elsevier, vol. 162(C), pages 444-452.
    5. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    6. Ahmadi, Mohamadreza & Mojallali, Hamed, 2012. "Chaotic invasive weed optimization algorithm with application to parameter estimation of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1108-1120.
    7. V. Jothiprakash & R. Arunkumar, 2013. "Optimization of Hydropower Reservoir Using Evolutionary Algorithms Coupled with Chaos," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1963-1979, May.
    8. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhou, Yanlai & Gao, Shida & Li, He, 2018. "Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1341-1352.
    9. Niu, Wen-jing & Feng, Zhong-kai & Cheng, Chun-tian, 2018. "Optimization of variable-head hydropower system operation considering power shortage aspect with quadratic programming and successive approximation," Energy, Elsevier, vol. 143(C), pages 1020-1028.
    10. Feng, Zhong-kai & Niu, Wen-jing & Wang, Sen & Cheng, Chun-tian & Jiang, Zhi-qiang & Qin, Hui & Liu, Yi, 2018. "Developing a successive linear programming model for head-sensitive hydropower system operation considering power shortage aspect," Energy, Elsevier, vol. 155(C), pages 252-261.
    11. R. Arunkumar & V. Jothiprakash, 2013. "Chaotic Evolutionary Algorithms for Multi-Reservoir Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5207-5222, December.
    12. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Zhou, Jian-zhong, 2017. "Peak shaving operation of hydro-thermal-nuclear plants serving multiple power grids by linear programming," Energy, Elsevier, vol. 135(C), pages 210-219.
    13. Sichilalu, Sam & Wamalwa, Fhazhil & Akinlabi, Esther T., 2019. "Optimal control of wind-hydrokinetic pumpback hydropower plant constrained with ecological water flows," Renewable Energy, Elsevier, vol. 138(C), pages 54-69.
    14. Shuai Liu & Zhong-Kai Feng & Wen-Jing Niu & Hai-Rong Zhang & Zhen-Guo Song, 2019. "Peak Operation Problem Solving for Hydropower Reservoirs by Elite-Guide Sine Cosine Algorithm with Gaussian Local Search and Random Mutation," Energies, MDPI, vol. 12(11), pages 1-24, June.
    15. Wu, Xinyu & Wu, Yiyang & Cheng, Xilong & Cheng, Chuntian & Li, Zehong & Wu, Yongqi, 2023. "A mixed-integer linear programming model for hydro unit commitment considering operation constraint priorities," Renewable Energy, Elsevier, vol. 204(C), pages 507-520.
    16. Wang, Jinwen & Chen, Cheng & Liu, Shuangquan, 2018. "A new field-levelling procedure to minimize spillages in hydropower reservoir operation," Energy, Elsevier, vol. 160(C), pages 979-985.
    17. Farzad Kiani & Sajjad Nematzadeh & Fateme Aysin Anka & Mine Afacan Findikli, 2023. "Chaotic Sand Cat Swarm Optimization," Mathematics, MDPI, vol. 11(10), pages 1-47, May.
    18. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2018. "Optimization of hydropower reservoirs operation balancing generation benefit and ecological requirement with parallel multi-objective genetic algorithm," Energy, Elsevier, vol. 153(C), pages 706-718.
    19. Singh, Vineet Kumar & Singal, S.K., 2017. "Operation of hydro power plants-a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 610-619.
    20. Shen, Jianjian & Cheng, Chuntian & Wang, Sen & Yuan, Xiaoye & Sun, Lifei & Zhang, Jun, 2020. "Multiobjective optimal operations for an interprovincial hydropower system considering peak-shaving demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2787-:d:365787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.