IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ics0360544223008939.html
   My bibliography  Save this article

Data-driven nested robust optimization for generation maintenance scheduling considering temporal correlation

Author

Listed:
  • Yang, Xiao
  • Li, Yuanzheng
  • Zhao, Yong
  • Yu, Yaowen
  • Lian, Yicheng
  • Hao, Guokai
  • Jiang, Lin

Abstract

Traditional power grids are gradually transitioning to smart grids with high penetration of renewable energy, which can realize the efficient utilization of power resources and low carbon emissions. However, the uncertainties of renewable energy (e.g., wind power) and load demand pose considerable challenges to secure operation and cost-effective planning in smart grids, such as generation maintenance scheduling (GMS). In this context, conventional methods including stochastic optimization and robust optimization are adopted to cope with the uncertainties and formulate the GMS plan. Unfortunately, these methods fail to consider the temporal information in uncertain variables, which can introduce extra operational costs brought by the uncertainties. To address this issue, we consider the temporal correlation of the uncertain wind power and load demand, and develop a data-driven two-stage nested robust optimization (NRO) approach for GMS to minimize the total costs of power system operation under uncertain scenarios. In our proposed approach, a temporal correlation Dirichlet process mixture model (TCDPMM) is developed to investigate the temporal information in the wind power and load demand datasets. Then, variational Bayesian inference (VBI) is employed to construct the data-driven uncertainty set, in which the temporal information for the uncertain variables and the correlations between the uncertain variables are considered. Subsequently, combined with this uncertainty set, a two-stage GMS problem is converted to a “min–max-max–min” optimization problem which is solved by the parallel Benders’ decomposition algorithm. The effectiveness and superiority of the proposed approach are demonstrated with a six-bus power system and a practical power system in China.

Suggested Citation

  • Yang, Xiao & Li, Yuanzheng & Zhao, Yong & Yu, Yaowen & Lian, Yicheng & Hao, Guokai & Jiang, Lin, 2023. "Data-driven nested robust optimization for generation maintenance scheduling considering temporal correlation," Energy, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:c:s0360544223008939
    DOI: 10.1016/j.energy.2023.127499
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223008939
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gargari, Milad Zamani & Hagh, Mehrdad Tarafdar & Zadeh, Saeid Ghassem, 2021. "Preventive maintenance scheduling of multi energy microgrid to enhance the resiliency of system," Energy, Elsevier, vol. 221(C).
    2. Tajeddini, Mohammad Amin & Rahimi-Kian, Ashkan & Soroudi, Alireza, 2014. "Risk averse optimal operation of a virtual power plant using two stage stochastic programming," Energy, Elsevier, vol. 73(C), pages 958-967.
    3. Hoseini, Naghi & Sheikholeslami, Abdolreza & Barforoushi, Taghi & Latify, Mohammad Amin, 2020. "Preventive maintenance mid-term scheduling of resources in multi-carrier energy systems," Energy, Elsevier, vol. 197(C).
    4. Li, Yuanzheng & Huang, Jingjing & Liu, Yun & Zhao, Tianyang & Zhou, Yue & Zhao, Yong & Yuen, Chau, 2022. "Day-ahead risk averse market clearing considering demand response with data-driven load uncertainty representation: A Singapore electricity market study," Energy, Elsevier, vol. 254(PA).
    5. Nguyen, Thi-Anh-Tuyet & Chou, Shuo-Yan & Yu, Tiffany Hui-Kuang, 2022. "Developing an exhaustive optimal maintenance schedule for offshore wind turbines based on risk-assessment, technical factors and cost-effective evaluation," Energy, Elsevier, vol. 249(C).
    6. Min, C.G. & Kim, M.K. & Park, J.K. & Yoon, Y.T., 2013. "Game-theory-based generation maintenance scheduling in electricity markets," Energy, Elsevier, vol. 55(C), pages 310-318.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Froger, Aurélien & Gendreau, Michel & Mendoza, Jorge E. & Pinson, Éric & Rousseau, Louis-Martin, 2016. "Maintenance scheduling in the electricity industry: A literature review," European Journal of Operational Research, Elsevier, vol. 251(3), pages 695-706.
    2. Zuo, Jian & Cadet, Catherine & Li, Zhongliang & Bérenguer, Christophe & Outbib, Rachid, 2024. "A deterioration-aware energy management strategy for the lifetime improvement of a multi-stack fuel cell system subject to a random dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Wang, Liying & Lin, Jialin & Dong, Houqi & Wang, Yuqing & Zeng, Ming, 2023. "Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system," Energy, Elsevier, vol. 270(C).
    4. Ricardo M. Lima & Antonio J. Conejo & Loïc Giraldi & Olivier Le Maître & Ibrahim Hoteit & Omar M. Knio, 2022. "Risk-Averse Stochastic Programming vs. Adaptive Robust Optimization: A Virtual Power Plant Application," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1795-1818, May.
    5. Paulino Martinez-Fernandez & Fernando deLlano-Paz & Anxo Calvo-Silvosa & Isabel Soares, 2019. "Assessing Renewable Energy Sources for Electricity (RES-E) Potential Using a CAPM-Analogous Multi-Stage Model," Energies, MDPI, vol. 12(19), pages 1-20, September.
    6. Huiru Zhao & Yuwei Wang & Mingrui Zhao & Qingkun Tan & Sen Guo, 2017. "Day-Ahead Market Modeling for Strategic Wind Power Producers under Robust Market Clearing," Energies, MDPI, vol. 10(7), pages 1-27, July.
    7. Shayegan-Rad, Ali & Badri, Ali & Zangeneh, Ali, 2017. "Day-ahead scheduling of virtual power plant in joint energy and regulation reserve markets under uncertainties," Energy, Elsevier, vol. 121(C), pages 114-125.
    8. Huang, Kangdi & Liu, Pan & Kim, Jong-Suk & Xu, Weifeng & Gong, Yu & Cheng, Qian & Zhou, Yong, 2023. "A model coupling current non-adjustable, coming adjustable and remaining stages for daily generation scheduling of a wind-solar-hydro complementary system," Energy, Elsevier, vol. 263(PB).
    9. Zhou, Dengji & Zhang, Huisheng & Weng, Shilie, 2014. "A novel prognostic model of performance degradation trend for power machinery maintenance," Energy, Elsevier, vol. 78(C), pages 740-746.
    10. Mazidi, Peyman & Tohidi, Yaser & Ramos, Andres & Sanz-Bobi, Miguel A., 2018. "Profit-maximization generation maintenance scheduling through bi-level programming," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1045-1057.
    11. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    12. Ji, Ziguang & Chen, Yi & Ma, Xiaobing & Cai, Yikun & Yang, Li, 2024. "Hierarchical condition-based maintenance planning for corrosion process considering natural environmental impact," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    13. Gargari, Milad Zamani & Hagh, Mehrdad Tarafdar & Zadeh, Saeid Ghassem, 2021. "Preventive maintenance scheduling of multi energy microgrid to enhance the resiliency of system," Energy, Elsevier, vol. 221(C).
    14. Sandelic, Monika & Peyghami, Saeed & Sangwongwanich, Ariya & Blaabjerg, Frede, 2022. "Reliability aspects in microgrid design and planning: Status and power electronics-induced challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    15. Yu, Songyuan & Fang, Fang & Liu, Yajuan & Liu, Jizhen, 2019. "Uncertainties of virtual power plant: Problems and countermeasures," Applied Energy, Elsevier, vol. 239(C), pages 454-470.
    16. Centeno-Telleria, Manu & Aizpurua, Jose Ignacio & Penalba, Markel, 2023. "Computationally efficient analytical O&M model for strategic decision-making in offshore renewable energy systems," Energy, Elsevier, vol. 285(C).
    17. Srinivasan, Dipti & Rajgarhia, Sanjana & Radhakrishnan, Bharat Menon & Sharma, Anurag & Khincha, H.P., 2017. "Game-Theory based dynamic pricing strategies for demand side management in smart grids," Energy, Elsevier, vol. 126(C), pages 132-143.
    18. Zamani Gargari, Milad & Tarafdar Hagh, Mehrdad & Ghassem Zadeh, Saeid, 2023. "Preventive scheduling of a multi-energy microgrid with mobile energy storage to enhance the resiliency of the system," Energy, Elsevier, vol. 263(PC).
    19. Abulanwar, Sayed & Ghanem, Abdelhady & Rizk, Mohammad E.M. & Hu, Weihao, 2021. "Adaptive synergistic control strategy for a hybrid AC/DC microgrid during normal operation and contingencies," Applied Energy, Elsevier, vol. 304(C).
    20. Mohammad Mohammadi Roozbehani & Ehsan Heydarian-Forushani & Saeed Hasanzadeh & Seifeddine Ben Elghali, 2022. "Virtual Power Plant Operational Strategies: Models, Markets, Optimization, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(19), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:c:s0360544223008939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.