IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v316y2024i2p556-568.html
   My bibliography  Save this article

Rethinking cyclic structures in liner shipping networks

Author

Listed:
  • Wetzel, Daniel
  • Tierney, Kevin

Abstract

Liner shipping networks are a central feature of modern supply chains that consist of cyclical, periodic services operated by container vessels. This specialized, cyclical structure eases planning for both shipper and carrier, but the combination of cyclical planning with the available time windows at ports can lead to inefficient operations. We propose to relax the cyclical assumption and allow vessels to move between services to avoid inefficient connections without interruption to container flows. From the view of a shipper, the cyclical and periodic properties of the services still hold, and the liner carrier can offer a more efficient overall network. The ensuing optimization problem consists of a combined vessel routing problem and cargo allocation problem, resulting in large and challenging instances. We model the problem using mixed-integer linear programming and use an expanding horizon heuristic to find starting solutions for our model. We use real-world data to show that giving flexibility to a liner network can result in a significant cost reduction over standard cyclical schedules.

Suggested Citation

  • Wetzel, Daniel & Tierney, Kevin, 2024. "Rethinking cyclic structures in liner shipping networks," European Journal of Operational Research, Elsevier, vol. 316(2), pages 556-568.
  • Handle: RePEc:eee:ejores:v:316:y:2024:i:2:p:556-568
    DOI: 10.1016/j.ejor.2024.01.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724000717
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.01.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wetzel, Daniel & Tierney, Kevin, 2020. "Integrating fleet deployment into liner shipping vessel repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    2. Richa Agarwal & Özlem Ergun, 2008. "Ship Scheduling and Network Design for Cargo Routing in Liner Shipping," Transportation Science, INFORMS, vol. 42(2), pages 175-196, May.
    3. Harilaos N. Psaraftis, 2019. "Ship routing and scheduling: the cart before the horse conjecture," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(1), pages 111-124, March.
    4. Shintani, Koichi & Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2007. "The container shipping network design problem with empty container repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(1), pages 39-59, January.
    5. Kjetil Fagerholt & Trond A. V. Johnsen & Haakon Lindstad, 2009. "Fleet deployment in liner shipping: a case study," Maritime Policy & Management, Taylor & Francis Journals, vol. 36(5), pages 397-409, October.
    6. I. K. Moon & Z. B. Qiu & J. H. Wang, 2015. "A combined tramp ship routing, fleet deployment, and network design problem," Maritime Policy & Management, Taylor & Francis Journals, vol. 42(1), pages 68-91, January.
    7. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    8. Kevin Tierney & Jan Fabian Ehmke & Ann Melissa Campbell & Daniel Müller, 2019. "Liner shipping single service design problem with arrival time service levels," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 620-652, September.
    9. Guericke, Stefan & Tierney, Kevin, 2015. "Liner shipping cargo allocation with service levels and speed optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 40-60.
    10. Dong, Bo & Christiansen, Marielle & Fagerholt, Kjetil & Bektaş, Tolga, 2020. "Combined maritime fleet deployment and inventory management with port visit flexibility in roll-on roll-off shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    11. Agostinho Agra & Marielle Christiansen & Lars Magnus Hvattum & Filipe Rodrigues, 2018. "Robust Optimization for a Maritime Inventory Routing Problem," Transportation Science, INFORMS, vol. 52(3), pages 509-525, June.
    12. Karsten, Christian Vad & Pisinger, David & Ropke, Stefan & Brouer, Berit Dangaard, 2015. "The time constrained multi-commodity network flow problem and its application to liner shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 122-138.
    13. Brouer, Berit D. & Dirksen, Jakob & Pisinger, David & Plum, Christian E.M. & Vaaben, Bo, 2013. "The Vessel Schedule Recovery Problem (VSRP) – A MIP model for handling disruptions in liner shipping," European Journal of Operational Research, Elsevier, vol. 224(2), pages 362-374.
    14. Fagerholt, Kjetil, 2001. "Ship scheduling with soft time windows: An optimisation based approach," European Journal of Operational Research, Elsevier, vol. 131(3), pages 559-571, June.
    15. Berit Dangaard Brouer & Christian Vad Karsten & David Pisinger, 2017. "Optimization in liner shipping," 4OR, Springer, vol. 15(1), pages 1-35, March.
    16. Khodakaram Salimifard & Sara Bigharaz, 2022. "The multicommodity network flow problem: state of the art classification, applications, and solution methods," Operational Research, Springer, vol. 22(1), pages 1-47, March.
    17. Reinhardt, Line Blander & Pisinger, David & Sigurd, Mikkel M. & Ahmt, Jonas, 2020. "Speed optimizations for liner networks with business constraints," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1127-1140.
    18. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    19. David F. Koza & Guy Desaulniers & Stefan Ropke, 2020. "Integrated Liner Shipping Network Design and Scheduling," Transportation Science, INFORMS, vol. 54(2), pages 512-533, March.
    20. Meng, Qiang & Wang, Shuaian & Lee, Chung-Yee, 2015. "A tailored branch-and-price approach for a joint tramp ship routing and bunkering problem," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 1-19.
    21. Berit D. Brouer & J. Fernando Alvarez & Christian E. M. Plum & David Pisinger & Mikkel M. Sigurd, 2014. "A Base Integer Programming Model and Benchmark Suite for Liner-Shipping Network Design," Transportation Science, INFORMS, vol. 48(2), pages 281-312, May.
    22. G Brønmo & M Christiansen & B Nygreen, 2007. "Ship routing and scheduling with flexible cargo sizes," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(9), pages 1167-1177, September.
    23. Lee, Sangyoon & Moon, Ilkyeong, 2020. "Robust empty container repositioning considering foldable containers," European Journal of Operational Research, Elsevier, vol. 280(3), pages 909-925.
    24. Wang, Shuaian & Meng, Qiang & Sun, Zhuo, 2013. "Container routing in liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 1-7.
    25. Lin, Dung-Ying & Chang, Yu-Ting, 2018. "Ship routing and freight assignment problem for liner shipping: Application to the Northern Sea Route planning problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 47-70.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christiansen, Marielle & Hellsten, Erik & Pisinger, David & Sacramento, David & Vilhelmsen, Charlotte, 2020. "Liner shipping network design," European Journal of Operational Research, Elsevier, vol. 286(1), pages 1-20.
    2. Akyüz, M. Hakan & Lee, Chung-Yee, 2016. "Service type assignment and container routing with transit time constraints and empty container repositioning for liner shipping service networks," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 46-71.
    3. Xi Jiang & Haijun Mao & Yadong Wang & Hao Zhang, 2020. "Liner Shipping Schedule Design for Near-Sea Routes Considering Big Customers’ Preferences on Ship Arrival Time," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    4. Berit Dangaard Brouer & Christian Vad Karsten & David Pisinger, 2018. "Optimization in liner shipping," Annals of Operations Research, Springer, vol. 271(1), pages 205-236, December.
    5. Wetzel, Daniel & Tierney, Kevin, 2020. "Integrating fleet deployment into liner shipping vessel repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    6. Trivella, Alessio & Corman, Francesco & Koza, David F. & Pisinger, David, 2021. "The multi-commodity network flow problem with soft transit time constraints: Application to liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    7. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    8. David F. Koza & Guy Desaulniers & Stefan Ropke, 2020. "Integrated Liner Shipping Network Design and Scheduling," Transportation Science, INFORMS, vol. 54(2), pages 512-533, March.
    9. Reinhardt, Line Blander & Pisinger, David & Sigurd, Mikkel M. & Ahmt, Jonas, 2020. "Speed optimizations for liner networks with business constraints," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1127-1140.
    10. Wang, Yadong & Wang, Shuaian, 2021. "Deploying, scheduling, and sequencing heterogeneous vessels in a liner container shipping route," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    11. Jin, Jian Gang & Meng, Qiang & Wang, Hai, 2021. "Feeder vessel routing and transshipment coordination at a congested hub port," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 1-21.
    12. Karsten, Christian Vad & Brouer, Berit Dangaard & Desaulniers, Guy & Pisinger, David, 2017. "Time constrained liner shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 152-162.
    13. Ksciuk, Jana & Kuhlemann, Stefan & Tierney, Kevin & Koberstein, Achim, 2023. "Uncertainty in maritime ship routing and scheduling: A Literature review," European Journal of Operational Research, Elsevier, vol. 308(2), pages 499-524.
    14. Zheng, Jianfeng & Qi, Jingwen & Sun, Zhuo & Li, Feng, 2018. "Community structure based global hub location problem in liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 1-19.
    15. Balakrishnan, Anantaram & Karsten, Christian Vad, 2017. "Container shipping service selection and cargo routing with transshipment limits," European Journal of Operational Research, Elsevier, vol. 263(2), pages 652-663.
    16. Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
    17. Gam Thi Hong Nguyen & Daria Ruzaeva & Julio Cesar Góez & Mario Guajardo, 2022. "Insights on the introduction of autonomous vessels to liner shipping networks," Journal of Shipping and Trade, Springer, vol. 7(1), pages 1-27, December.
    18. Zhen, Lu & Wu, Yiwei & Wang, Shuaian & Laporte, Gilbert, 2020. "Green technology adoption for fleet deployment in a shipping network," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 388-410.
    19. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    20. Milan Janić, 2018. "Multidimensional examination of the performances of a liner shipping network: trunk line/route operated by conventional (Panamax Max) and mega (ULC - ultra large container) ships," Journal of Shipping and Trade, Springer, vol. 3(1), pages 1-35, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:316:y:2024:i:2:p:556-568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.