IDEAS home Printed from https://ideas.repec.org/a/spr/josatr/v3y2018i1d10.1186_s41072-018-0039-9.html
   My bibliography  Save this article

Multidimensional examination of the performances of a liner shipping network: trunk line/route operated by conventional (Panamax Max) and mega (ULC - ultra large container) ships

Author

Listed:
  • Milan Janić

    (Delft University of Technology)

Abstract

This paper deals multidimensional examination of performances of a trunk line/route of liner container-shipping network serving an intercontinental supply chain by the conventional (Panamax Max) and mega (ULC - Ultra Large Container) ships. The trunk line/route of the network includes the supplier and the customer seaport of freight shipments consolidated into containers (TEU (Twenty Foot Equivalent Unit)), and the container ships operated by liner shipping carriers and/or their alliances providing transport services between them. The supplier and the customer seaport can be either the main seaports of the line or the hubs of the H&S (Hub-and-Spoke) network of particular liner container-shipping carriers. The multidimensional examination implies defining and developing the analytical models of indicators of the trunk line’s infrastructural, technical/technological, operational, economic, environmental, and social performances and their application to the selected real-life case. The infrastructural performances relate to the characteristics of infrastructure (berths) and container terminals in the seaports at both ends of the line. The technical/technological performances reflect the characteristics of facilities and equipment for loading/unloading and storing TEU shipments in these terminals, and that of the container ships transporting them. The operational performances include the transport service frequency, size, transport work and technical productivity of the deployed container ship fleet while serving a given volume of TEU flows during the specified time. The economic performances contain the inventory, handling, transport, and external costs of handling the TEU flows. The environmental performances relate to the fuel consumption and consequent emissions of GHG (Green House Gases). Finally, the social performances in terms of impacts generally refer to noise, congestion, and safety. The models of indicators of performances have been applied to the liner container-shipping trunk line/route connecting the East Asia and North Europe operated exclusively by two above-mentioned categories of ships according to the “what-if” scenario approach. The results have indicated the very high sensitivity of all considered indicators of performances to the category of deployed ships under given conditions. As well, they have shown to be dependent on each other – the operational on the technical/technological, and the economic, environmental, and social on the technical/technological and operational.

Suggested Citation

  • Milan Janić, 2018. "Multidimensional examination of the performances of a liner shipping network: trunk line/route operated by conventional (Panamax Max) and mega (ULC - ultra large container) ships," Journal of Shipping and Trade, Springer, vol. 3(1), pages 1-35, December.
  • Handle: RePEc:spr:josatr:v:3:y:2018:i:1:d:10.1186_s41072-018-0039-9
    DOI: 10.1186/s41072-018-0039-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s41072-018-0039-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1186/s41072-018-0039-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masahiko Furuichi & Natsuhiko Otsuka, 2018. "Examining quick delivery at an affordable cost by the NSR/SCR-combined shipping in the age of Mega-ships," Maritime Policy & Management, Taylor & Francis Journals, vol. 45(8), pages 1057-1077, November.
    2. Shintani, Koichi & Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2007. "The container shipping network design problem with empty container repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(1), pages 39-59, January.
    3. Amir Hossein Gharehgozli & Debjit Roy & René de Koster, 2016. "Sea container terminals: New technologies and OR models," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 18(2), pages 103-140, June.
    4. Christa Sys & Gust Blauwens & Eddy Omey & Eddy Van De Voorde & Frank Witlox, 2008. "In Search of the Link between Ship Size and Operations," Transportation Planning and Technology, Taylor & Francis Journals, vol. 31(4), pages 435-463, June.
    5. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    6. Carlos F. Daganzo, 2005. "Logistics Systems Analysis," Springer Books, Springer, edition 0, number 978-3-540-27516-9, December.
    7. Tavasszy, Lóránt & Minderhoud, Michiel & Perrin, Jean-François & Notteboom, Theo, 2011. "A strategic network choice model for global container flows: specification, estimation and application," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1163-1172.
    8. Gelareh, Shahin & Nickel, Stefan & Pisinger, David, 2010. "Liner shipping hub network design in a competitive environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 991-1004, November.
    9. Mohamed Grida & Chung-Yee Lee, 2018. "An empirical model for estimating berth and sailing times of mega container ships," Maritime Policy & Management, Taylor & Francis Journals, vol. 45(8), pages 1078-1093, November.
    10. Berit D. Brouer & J. Fernando Alvarez & Christian E. M. Plum & David Pisinger & Mikkel M. Sigurd, 2014. "A Base Integer Programming Model and Benchmark Suite for Liner-Shipping Network Design," Transportation Science, INFORMS, vol. 48(2), pages 281-312, May.
    11. Liehui Wang & Yan Zhu & Cesar Ducruet & Mattia Bunel & Yui-yip Lau, 2018. "From hierarchy to networking: the evolution of the “twenty-first-century Maritime Silk Road” container shipping system," Transport Reviews, Taylor & Francis Journals, vol. 38(4), pages 416-435, July.
    12. Yuquan Du & Qiang Meng & Shuaian Wang, 2017. "Mathematically calculating the transit time of cargo through a liner shipping network with various trans-shipment policies," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(2), pages 248-270, February.
    13. Richa Agarwal & Özlem Ergun, 2008. "Ship Scheduling and Network Design for Cargo Routing in Liner Shipping," Transportation Science, INFORMS, vol. 42(2), pages 175-196, May.
    14. Meng, Qiang & Wang, Shuaian, 2011. "Liner shipping service network design with empty container repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(5), pages 695-708, September.
    15. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    16. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos & Liu, Miaojia, 2006. "The economic viability of container mega-ships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(1), pages 21-41, January.
    17. Hall, Randolph W., 1993. "Design for local area freight networks," Transportation Research Part B: Methodological, Elsevier, vol. 27(2), pages 79-95, April.
    18. Shy Bassan, 2007. "Evaluating seaport operation and capacity analysis—preliminary methodology," Maritime Policy & Management, Taylor & Francis Journals, vol. 34(1), pages 3-19, February.
    19. Zheng, Jianfeng & Meng, Qiang & Sun, Zhuo, 2015. "Liner hub-and-spoke shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 32-48.
    20. Gelareh, Shahin & Pisinger, David, 2011. "Fleet deployment, network design and hub location of liner shipping companies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 947-964.
    21. Amir Gharehgozli & Joan P. Mileski & Okan Duru, 2017. "Heuristic estimation of container stacking and reshuffling operations under the containership delay factor and mega-ship challenge," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(3), pages 373-391, April.
    22. Plum, Christian E.M. & Pisinger, David & Sigurd, Mikkel M., 2014. "A service flow model for the liner shipping network design problem," European Journal of Operational Research, Elsevier, vol. 235(2), pages 378-386.
    23. Panayides, Photis M. & Wiedmer, Robert, 2011. "Strategic alliances in container liner shipping," Research in Transportation Economics, Elsevier, vol. 32(1), pages 25-38.
    24. Itf, 2015. "The Impact of Mega-Ships," International Transport Forum Policy Papers 10, OECD Publishing.
    25. Richa Agarwal & Özlem Ergun, 2010. "Network Design and Allocation Mechanisms for Carrier Alliances in Liner Shipping," Operations Research, INFORMS, vol. 58(6), pages 1726-1742, December.
    26. Notteboom, Theo E. & Vernimmen, Bert, 2009. "The effect of high fuel costs on liner service configuration in container shipping," Journal of Transport Geography, Elsevier, vol. 17(5), pages 325-337.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aminul Islam & Mohammad Tofayal Ahmed & Md Alam Hossain Mondal & Md. Rabiul Awual & Minhaj Uddin Monir & Kamrul Islam, 2021. "A snapshot of coal‐fired power generation in Bangladesh: A demand–supply outlook," Natural Resources Forum, Blackwell Publishing, vol. 45(2), pages 157-182, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Jianfeng & Sun, Zhuo & Zhang, Fangjun, 2016. "Measuring the perceived container leasing prices in liner shipping network design with empty container repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 123-140.
    2. Zheng, Jianfeng & Meng, Qiang & Sun, Zhuo, 2015. "Liner hub-and-spoke shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 32-48.
    3. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    4. Nguyen Khoi Tran & Hans-Dietrich Haasis & Tobias Buer, 2017. "Container shipping route design incorporating the costs of shipping, inland/feeder transport, inventory and CO2 emission," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(4), pages 667-694, December.
    5. Zheng, Jianfeng & Qi, Jingwen & Sun, Zhuo & Li, Feng, 2018. "Community structure based global hub location problem in liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 1-19.
    6. Gang Du & Chuanwang Sun & Jinxian Weng, 2016. "Liner Shipping Fleet Deployment with Sustainable Collaborative Transportation," Sustainability, MDPI, vol. 8(2), pages 1-15, February.
    7. Berit Dangaard Brouer & Christian Vad Karsten & David Pisinger, 2018. "Optimization in liner shipping," Annals of Operations Research, Springer, vol. 271(1), pages 205-236, December.
    8. Yang, Dong & Pan, Kai & Wang, Shuaian, 2018. "On service network improvement for shipping lines under the one belt one road initiative of China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 117(C), pages 82-95.
    9. Chen, Jingxu & Jia, Shuai & Wang, Shuaian & Liu, Zhiyuan, 2018. "Subloop-based reversal of port rotation directions for container liner shipping network alteration," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 336-361.
    10. Christiansen, Marielle & Hellsten, Erik & Pisinger, David & Sacramento, David & Vilhelmsen, Charlotte, 2020. "Liner shipping network design," European Journal of Operational Research, Elsevier, vol. 286(1), pages 1-20.
    11. Gianfranco FANCELLO & Patrizia SERRA & Simona MANCINI, 2019. "A Network Design Optimization Problem For Ro-Ro Freight Transport In The Tyrrhenian Area," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 14(4), pages 63-76, December.
    12. Tobias Buer & Rasmus Haass, 2018. "Cooperative liner shipping network design by means of a combinatorial auction," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 686-711, December.
    13. Manuel Herrera & Per J. Agrell & Casiano Manrique-de-Lara-Peñate & Lourdes Trujillo, 2017. "Vessel capacity restrictions in the fleet deployment problem: an application to the Panama Canal," Annals of Operations Research, Springer, vol. 253(2), pages 845-869, June.
    14. David F. Koza & Guy Desaulniers & Stefan Ropke, 2020. "Integrated Liner Shipping Network Design and Scheduling," Transportation Science, INFORMS, vol. 54(2), pages 512-533, March.
    15. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    16. Sun, Zhuo & Zheng, Jianfeng, 2016. "Finding potential hub locations for liner shipping," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 750-761.
    17. Karsten, Christian Vad & Pisinger, David & Ropke, Stefan & Brouer, Berit Dangaard, 2015. "The time constrained multi-commodity network flow problem and its application to liner shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 122-138.
    18. Karsten, Christian Vad & Brouer, Berit Dangaard & Desaulniers, Guy & Pisinger, David, 2017. "Time constrained liner shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 152-162.
    19. Akyüz, M. Hakan & Lee, Chung-Yee, 2016. "Service type assignment and container routing with transit time constraints and empty container repositioning for liner shipping service networks," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 46-71.
    20. Berit Dangaard Brouer & Christian Vad Karsten & David Pisinger, 2017. "Optimization in liner shipping," 4OR, Springer, vol. 15(1), pages 1-35, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:josatr:v:3:y:2018:i:1:d:10.1186_s41072-018-0039-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.