IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7828-d417430.html
   My bibliography  Save this article

Liner Shipping Schedule Design for Near-Sea Routes Considering Big Customers’ Preferences on Ship Arrival Time

Author

Listed:
  • Xi Jiang

    (School of Transportation, Southeast University, Nanjing 211189, China)

  • Haijun Mao

    (School of Transportation, Southeast University, Nanjing 211189, China)

  • Yadong Wang

    (School of Economics & Management, Nanjing University of Science & Technology, Nanjing 210094, China)

  • Hao Zhang

    (School of Transportation, Southeast University, Nanjing 211189, China
    School of Traffic Engineering, Huaiyin Institute of Technology, Huai’an 223003, China)

Abstract

There usually exist a few big customers at ports of near-sea container shipping routes who have preferences on the weekly ship arrival times due to their own production and sale schedules. Therefore, in practice, when designing ship schedules, carriers must consider such customers’ time preferences, regarded as weekly soft-time windows, to improve customer retention, thereby achieving sustainable development during a depression in the shipping industry. In this regard, this study explores how to balance the tradeoff between the ship total operating costs and penalty costs from the violation of the weekly soft-time windows. A mixed-integer nonlinear nonconvex model is proposed and is further transformed into a mixed-integer linear optimization model that can be efficiently solved by extant solvers to provide a global optimal solution. The proposed model is applied to a near-sea service route from China to Southeast Asia. The results demonstrate that the time preferences of big customers affect the total cost, optimal sailing speeds, and optimal ship arrival times. Moreover, the voyage along a near-sea route is generally short, leaving carriers little room for adjusting the fleet size.

Suggested Citation

  • Xi Jiang & Haijun Mao & Yadong Wang & Hao Zhang, 2020. "Liner Shipping Schedule Design for Near-Sea Routes Considering Big Customers’ Preferences on Ship Arrival Time," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7828-:d:417430
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7828/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7828/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Houming Fan & Jiaqi Yu & Xinzhe Liu, 2019. "Tramp Ship Routing and Scheduling with Speed Optimization Considering Carbon Emissions," Sustainability, MDPI, vol. 11(22), pages 1-19, November.
    2. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship fleet deployment with container transshipment operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 470-484.
    3. Fagerholt, Kjetil, 2001. "Ship scheduling with soft time windows: An optimisation based approach," European Journal of Operational Research, Elsevier, vol. 131(3), pages 559-571, June.
    4. Thalis Zis & Robin Jacob North & Panagiotis Angeloudis & Washington Yotto Ochieng & Michael Geoffrey Harrison Bell, 2014. "Evaluation of cold ironing and speed reduction policies to reduce ship emissions near and at ports," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 16(4), pages 371-398, December.
    5. Richa Agarwal & Özlem Ergun, 2008. "Ship Scheduling and Network Design for Cargo Routing in Liner Shipping," Transportation Science, INFORMS, vol. 42(2), pages 175-196, May.
    6. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    7. Christos Kontovas & Harilaos N. Psaraftis, 2011. "Reduction of emissions along the maritime intermodal container chain: operational models and policies," Maritime Policy & Management, Taylor & Francis Journals, vol. 38(4), pages 451-469, March.
    8. Shintani, Koichi & Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2007. "The container shipping network design problem with empty container repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(1), pages 39-59, January.
    9. Song, Dong-Ping & Li, Dong & Drake, Paul, 2015. "Multi-objective optimization for planning liner shipping service with uncertain port times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 1-22.
    10. Bin Yu & Zixuan Peng & Zhihui Tian & Baozhen Yao, 2019. "Sailing speed optimization for tramp ships with fuzzy time window," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 308-330, June.
    11. Lindstad, Haakon & Asbjørnslett, Bjørn E. & Strømman, Anders H., 2011. "Reductions in greenhouse gas emissions and cost by shipping at lower speeds," Energy Policy, Elsevier, vol. 39(6), pages 3456-3464, June.
    12. Shuaian Wang & Abdurahim Alharbi & Pam Davy, 2015. "Ship Route Schedule Based Interactions Between Container Shipping Lines and Port Operators," International Series in Operations Research & Management Science, in: Chung-Yee Lee & Qiang Meng (ed.), Handbook of Ocean Container Transport Logistics, edition 127, chapter 10, pages 279-313, Springer.
    13. Ali Cheaitou & Pierre Cariou, 2012. "Liner shipping service optimisation with reefer containers capacity: an application to northern Europe--South America trade," Maritime Policy & Management, Taylor & Francis Journals, vol. 39(6), pages 589-602, November.
    14. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    15. Kjetil Fagerholt & Trond A. V. Johnsen & Haakon Lindstad, 2009. "Fleet deployment in liner shipping: a case study," Maritime Policy & Management, Taylor & Francis Journals, vol. 36(5), pages 397-409, October.
    16. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    17. Harilaos N. Psaraftis, 2019. "Speed Optimization vs Speed Reduction: the Choice between Speed Limits and a Bunker Levy," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    18. Liqian Yang & Gang Chen & Jinlou Zhao & Niels Gorm Malý Rytter, 2020. "Ship Speed Optimization Considering Ocean Currents to Enhance Environmental Sustainability in Maritime Shipping," Sustainability, MDPI, vol. 12(9), pages 1-24, May.
    19. Gang Du & Chuanwang Sun & Jinxian Weng, 2016. "Liner Shipping Fleet Deployment with Sustainable Collaborative Transportation," Sustainability, MDPI, vol. 8(2), pages 1-15, February.
    20. David F. Koza & Guy Desaulniers & Stefan Ropke, 2020. "Integrated Liner Shipping Network Design and Scheduling," Transportation Science, INFORMS, vol. 54(2), pages 512-533, March.
    21. Meng, Qiang & Wang, Shuaian, 2011. "Optimal operating strategy for a long-haul liner service route," European Journal of Operational Research, Elsevier, vol. 215(1), pages 105-114, November.
    22. Jun Xia & Kevin X. Li & Hong Ma & Zhou Xu, 2015. "Joint Planning of Fleet Deployment, Speed Optimization, and Cargo Allocation for Liner Shipping," Transportation Science, INFORMS, vol. 49(4), pages 922-938, November.
    23. Yadong Wang & Qiang Meng & Haibo Kuang, 2019. "Intercontinental Liner Shipping Service Design," Transportation Science, INFORMS, vol. 53(2), pages 344-364, March.
    24. Aydin, N. & Lee, H. & Mansouri, S.A., 2017. "Speed optimization and bunkering in liner shipping in the presence of uncertain service times and time windows at ports," European Journal of Operational Research, Elsevier, vol. 259(1), pages 143-154.
    25. Qi, Xiangtong & Song, Dong-Ping, 2012. "Minimizing fuel emissions by optimizing vessel schedules in liner shipping with uncertain port times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 863-880.
    26. Fischer, Andreas & Nokhart, Håkon & Olsen, Henrik & Fagerholt, Kjetil & Rakke, Jørgen Glomvik & Stålhane, Magnus, 2016. "Robust planning and disruption management in roll-on roll-off liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 51-67.
    27. Meng, Qiang & Wang, Shuaian, 2012. "Liner ship fleet deployment with week-dependent container shipment demand," European Journal of Operational Research, Elsevier, vol. 222(2), pages 241-252.
    28. Notteboom, Theo E. & Vernimmen, Bert, 2009. "The effect of high fuel costs on liner service configuration in container shipping," Journal of Transport Geography, Elsevier, vol. 17(5), pages 325-337.
    29. Marielle Christiansen & Kjetil Fagerholt, 2002. "Robust ship scheduling with multiple time windows," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(6), pages 611-625, September.
    30. Wang, Shuaian & Meng, Qiang, 2012. "Sailing speed optimization for container ships in a liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 701-714.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Achilleas Tsantis & John Mangan & Agustina Calatayud & Roberto Palacin, 2023. "Container shipping: a systematic literature review of themes and factors that influence the establishment of direct connections between countries," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(4), pages 667-697, December.
    2. Zhang, Ming & Zeng, Xianyang & Tan, Zhijia, 2024. "Joint decision of green technology adoption and sailing pattern for a coastal ship under ECAs," Transport Policy, Elsevier, vol. 146(C), pages 102-113.
    3. Ge, Jiawei & fu, Qiang & Zhang, Qiang & Wan, Zheng, 2022. "Regional operating patterns of world container shipping network: A perspective from motif identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    4. Zhang, Yimeng & Li, Xinlei & van Hassel, Edwin & Negenborn, Rudy R. & Atasoy, Bilge, 2022. "Synchromodal transport planning considering heterogeneous and vague preferences of shippers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yadong & Wang, Shuaian, 2021. "Deploying, scheduling, and sequencing heterogeneous vessels in a liner container shipping route," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    2. Zhen, Lu & Wu, Yiwei & Wang, Shuaian & Laporte, Gilbert, 2020. "Green technology adoption for fleet deployment in a shipping network," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 388-410.
    3. Wang, Hua & Wang, Shuaian & Meng, Qiang, 2014. "Simultaneous optimization of schedule coordination and cargo allocation for liner container shipping networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 261-273.
    4. Maxim A. Dulebenets & Junayed Pasha & Olumide F. Abioye & Masoud Kavoosi, 2021. "Vessel scheduling in liner shipping: a critical literature review and future research needs," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 43-106, March.
    5. Manuel Herrera & Per J. Agrell & Casiano Manrique-de-Lara-Peñate & Lourdes Trujillo, 2017. "Vessel capacity restrictions in the fleet deployment problem: an application to the Panama Canal," Annals of Operations Research, Springer, vol. 253(2), pages 845-869, June.
    6. Sun, Qinghe & Li, Wei & Meng, Qiang, 2024. "Single-leg shipping revenue management for expedited services with ambiguous elasticity in transit-time-sensitive demand," Transportation Research Part B: Methodological, Elsevier, vol. 180(C).
    7. Wang, Yadong & Meng, Qiang, 2021. "Optimizing freight rate of spot market containers with uncertainties in shipping demand and available ship capacity," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 314-332.
    8. Akyüz, M. Hakan & Lee, Chung-Yee, 2016. "Service type assignment and container routing with transit time constraints and empty container repositioning for liner shipping service networks," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 46-71.
    9. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    10. Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
    11. Chen, Kang & Chen, Dongxu & Sun, Xueshan & Yang, Zhongzhen, 2016. "Container Ocean-transportation System Design with the factors of demand fluctuation and choice inertia of shippers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 267-281.
    12. Zhao, Shuaiqi & Yang, Hualong & Zheng, Jianfeng & Li, Dechang, 2024. "A two-step approach for deploying heterogeneous vessels and designing reliable schedule in liner shipping services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).
    13. Zhen, Lu & Hu, Yi & Wang, Shuaian & Laporte, Gilbert & Wu, Yiwei, 2019. "Fleet deployment and demand fulfillment for container shipping liners," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 15-32.
    14. Wang, Shuaian & Liu, Zhiyuan & Bell, Michael G.H., 2015. "Profit-based maritime container assignment models for liner shipping networks," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 59-76.
    15. Christian Va Karsten & Stefan Ropke & David Pisinger, 2018. "Simultaneous Optimization of Container Ship Sailing Speed and Container Routing with Transit Time Restrictions," Transportation Science, INFORMS, vol. 52(4), pages 769-787, August.
    16. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    17. Wang, Shuaian, 2014. "A novel hybrid-link-based container routing model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 165-175.
    18. Junayed Pasha & Maxim A. Dulebenets & Masoud Kavoosi & Olumide F. Abioye & Oluwatosin Theophilus & Hui Wang & Raphael Kampmann & Weihong Guo, 2020. "Holistic tactical-level planning in liner shipping: an exact optimization approach," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-35, December.
    19. Meng, Qiang & Du, Yuquan & Wang, Yadong, 2016. "Shipping log data based container ship fuel efficiency modeling," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 207-229.
    20. Christiansen, Marielle & Hellsten, Erik & Pisinger, David & Sacramento, David & Vilhelmsen, Charlotte, 2020. "Liner shipping network design," European Journal of Operational Research, Elsevier, vol. 286(1), pages 1-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7828-:d:417430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.