IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v42y2008i2p175-196.html
   My bibliography  Save this article

Ship Scheduling and Network Design for Cargo Routing in Liner Shipping

Author

Listed:
  • Richa Agarwal

    (School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

  • Özlem Ergun

    (School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

Abstract

Acommon problem faced by carriers in liner shipping is the design of their service network. Given a set of demands to be transported and a set of ports, a carrier wants to design service routes for its ships as efficiently as possible, using the underlying facilities. Furthermore, the profitability of the service routes designed depends on the paths chosen to ship the cargo. We present an integrated model, a mixed-integer linear program, to solve the ship-scheduling and the cargo-routing problems, simultaneously. The proposed model incorporates relevant constraints, such as the weekly frequency constraint on the operated routes, and emerging trends, such as the transshipment of cargo between two or more service routes. To solve the mixed-integer program, we propose algorithms that exploit the separability of the problem. More specifically, a greedy heuristic, a column generation-based algorithm, and a two-phase Benders decomposition-based algorithm are developed, and their computational efficiency in terms of the solution quality and the computational time taken is discussed. An efficient iterative search algorithm is proposed to generate schedules for ships. Computational experiments are performed on randomly generated instances simulating real life with up to 20 ports and 100 ships. Our results indicate high percentage utilization of ships' capacities and a significant number of transshipments in the final solution.

Suggested Citation

  • Richa Agarwal & Özlem Ergun, 2008. "Ship Scheduling and Network Design for Cargo Routing in Liner Shipping," Transportation Science, INFORMS, vol. 42(2), pages 175-196, May.
  • Handle: RePEc:inm:ortrsc:v:42:y:2008:i:2:p:175-196
    DOI: 10.1287/trsc.1070.0205
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1070.0205
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1070.0205?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marielle Christiansen & Bjorn Nygreen, 1998. "A method for solving ship routing problemswith inventory constraints," Annals of Operations Research, Springer, vol. 81(0), pages 357-378, June.
    2. Raymond K. Cheung & Chuen-Yih Chen, 1998. "A Two-Stage Stochastic Network Model and Solution Methods for the Dynamic Empty Container Allocation Problem," Transportation Science, INFORMS, vol. 32(2), pages 142-162, May.
    3. Jean-François Cordeau & Goran Stojković & François Soumis & Jacques Desrosiers, 2001. "Benders Decomposition for Simultaneous Aircraft Routing and Crew Scheduling," Transportation Science, INFORMS, vol. 35(4), pages 375-388, November.
    4. Dong-Wook Song & Photis M. Panayides, 2002. "A conceptual application of cooperative game theory to liner shipping strategic alliances," Maritime Policy & Management, Taylor & Francis Journals, vol. 29(3), pages 285-301.
    5. Krishan Rana & R. G. Vickson, 1991. "Routing Container Ships Using Lagrangean Relaxation and Decomposition," Transportation Science, INFORMS, vol. 25(3), pages 201-214, August.
    6. H. B. Bendall & A. F. Stent, 1999. "Longhaul feeder services in an era of changing technology: an Asia-Pacific perspective," Maritime Policy & Management, Taylor & Francis Journals, vol. 26(2), pages 145-159, April.
    7. Russ J. Vander Wiel & Nikolaos V. Sahinidis, 1996. "An exact solution approach for the time‐dependent traveling‐salesman problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(6), pages 797-820, September.
    8. Jean-François Cordeau & François Soumis & Jacques Desrosiers, 2000. "A Benders Decomposition Approach for the Locomotive and Car Assignment Problem," Transportation Science, INFORMS, vol. 34(2), pages 133-149, May.
    9. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos & Liu, Miaojia, 2006. "The economic viability of container mega-ships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(1), pages 21-41, January.
    10. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    11. Ronen, David, 1993. "Ship scheduling: The last decade," European Journal of Operational Research, Elsevier, vol. 71(3), pages 325-333, December.
    12. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    13. Ronen, David, 1983. "Cargo ships routing and scheduling: Survey of models and problems," European Journal of Operational Research, Elsevier, vol. 12(2), pages 119-126, February.
    14. Dale McDaniel & Mike Devine, 1977. "A Modified Benders' Partitioning Algorithm for Mixed Integer Programming," Management Science, INFORMS, vol. 24(3), pages 312-319, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    2. Zheng, Jianfeng & Sun, Zhuo & Zhang, Fangjun, 2016. "Measuring the perceived container leasing prices in liner shipping network design with empty container repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 123-140.
    3. Chen, Kang & Chen, Dongxu & Sun, Xueshan & Yang, Zhongzhen, 2016. "Container Ocean-transportation System Design with the factors of demand fluctuation and choice inertia of shippers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 267-281.
    4. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    5. Zheng, Jianfeng & Yang, Dong, 2016. "Hub-and-spoke network design for container shipping along the Yangtze River," Journal of Transport Geography, Elsevier, vol. 55(C), pages 51-57.
    6. Sun, Zhuo & Zheng, Jianfeng, 2016. "Finding potential hub locations for liner shipping," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 750-761.
    7. Sun, Qinghe & Meng, Qiang & Chou, Mabel C., 2021. "Optimizing voyage charterparty (VCP) arrangement: Laytime negotiation and operations coordination," European Journal of Operational Research, Elsevier, vol. 291(1), pages 263-270.
    8. Meng, Qiang & Wang, Tingsong & Wang, Shuaian, 2012. "Short-term liner ship fleet planning with container transshipment and uncertain container shipment demand," European Journal of Operational Research, Elsevier, vol. 223(1), pages 96-105.
    9. Zheng, Jianfeng & Meng, Qiang & Sun, Zhuo, 2015. "Liner hub-and-spoke shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 32-48.
    10. Mulder, Judith & Dekker, Rommert, 2014. "Methods for strategic liner shipping network design," European Journal of Operational Research, Elsevier, vol. 235(2), pages 367-377.
    11. Manuel Herrera & Per J. Agrell & Casiano Manrique-de-Lara-Peñate & Lourdes Trujillo, 2017. "Vessel capacity restrictions in the fleet deployment problem: an application to the Panama Canal," Annals of Operations Research, Springer, vol. 253(2), pages 845-869, June.
    12. Harilaos N. Psaraftis, 2019. "Ship routing and scheduling: the cart before the horse conjecture," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(1), pages 111-124, March.
    13. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship fleet deployment with container transshipment operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 470-484.
    14. Qiang Meng & Tingsong Wang, 2010. "A chance constrained programming model for short-term liner ship fleet planning problems," Maritime Policy & Management, Taylor & Francis Journals, vol. 37(4), pages 329-346, July.
    15. Lee, Chung-Yee & Lee, Hau L. & Zhang, Jiheng, 2015. "The impact of slow ocean steaming on delivery reliability and fuel consumption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 176-190.
    16. Pang, King-Wah & Xu, Zhou & Li, Chung-Lun, 2011. "Ship routing problem with berthing time clash avoidance constraints," International Journal of Production Economics, Elsevier, vol. 131(2), pages 752-762, June.
    17. Gelareh, Shahin & Pisinger, David, 2011. "Fleet deployment, network design and hub location of liner shipping companies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 947-964.
    18. Dung-Ying Lin & Chien-Chih Huang & ManWo Ng, 2017. "The coopetition game in international liner shipping," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(4), pages 474-495, May.
    19. Nikolaos Charalambopoulos & Andreas C. Nearchou, 2021. "Ship Routing Using Genetic Algorithms," SN Operations Research Forum, Springer, vol. 2(3), pages 1-26, September.
    20. Chen, Kang & Yang, Zhongzhen & Notteboom, Theo, 2014. "The design of coastal shipping services subject to carbon emission reduction targets and state subsidy levels," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 192-211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:42:y:2008:i:2:p:175-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.