IDEAS home Printed from https://ideas.repec.org/a/zbw/espost/224469.html
   My bibliography  Save this article

Frequency and duration of low-wind-power events in Germany

Author

Listed:
  • Ohlendorf, Nils
  • Schill, Wolf-Peter

Abstract

In the transition to a renewable energy system, the occurrence of low-wind-power events receives increasing attention. We analyze the frequency and duration of such events for onshore wind power in Germany, based on 40 years of reanalysis data and open software. We find that low-wind-power events are less frequent in winter than in summer, but the maximum duration is distributed more evenly between months. While short events are frequent, very long events are much rarer. Every year, a period of around five consecutive days with an average wind capacity factor below 10% occurs, and every ten years a respective period of nearly eight days. These durations decrease if only winter months are considered. The longest event in the data lasts nearly ten days. We conclude that public concerns about low-wind-power events in winter may be overrated, but recommend that modeling studies consider multiple weather years to properly account for such events.

Suggested Citation

  • Ohlendorf, Nils & Schill, Wolf-Peter, 2020. "Frequency and duration of low-wind-power events in Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 15(8).
  • Handle: RePEc:zbw:espost:224469
    DOI: 10.1088/1748-9326/ab91e9
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/224469/1/Ohlendorf-2020-Environ-Res-Lett.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1088/1748-9326/ab91e9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Otero, Noelia & Martius, Olivia & Allen, Sam & Bloomfield, Hannah & Schaefli, Bettina, 2022. "A copula-based assessment of renewable energy droughts across Europe," Renewable Energy, Elsevier, vol. 201(P1), pages 667-677.
    2. Jiang, Haiyang & Du, Ershun & He, Boyu & Zhang, Ning & Wang, Peng & Li, Fuqiang & Ji, Jie, 2023. "Analysis and modeling of seasonal characteristics of renewable energy generation," Renewable Energy, Elsevier, vol. 219(P1).
    3. Mayer, Martin János & Biró, Bence & Szücs, Botond & Aszódi, Attila, 2023. "Probabilistic modeling of future electricity systems with high renewable energy penetration using machine learning," Applied Energy, Elsevier, vol. 336(C).
    4. Lorin Jenkel & Stefan Jonas & Angela Meyer, 2023. "Privacy-Preserving Fleet-Wide Learning of Wind Turbine Conditions with Federated Learning," Energies, MDPI, vol. 16(17), pages 1-29, September.
    5. Orszaghova, J. & Lemoine, S. & Santo, H. & Taylor, P.H. & Kurniawan, A. & McGrath, N. & Zhao, W. & Cuttler, M.V.W., 2022. "Variability of wave power production of the M4 machine at two energetic open ocean locations: Off Albany, Western Australia and at EMEC, Orkney, UK," Renewable Energy, Elsevier, vol. 197(C), pages 417-431.
    6. Kapica, Jacek & Jurasz, Jakub & Canales, Fausto A. & Bloomfield, Hannah & Guezgouz, Mohammed & De Felice, Matteo & Zbigniew, Kobus, 2024. "The potential impact of climate change on European renewable energy droughts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    7. Göke, Leonard & Schmidt, Felix & Kendziorski, Mario, 2024. "Stabilized Benders decomposition for energy planning under climate uncertainty," European Journal of Operational Research, Elsevier, vol. 316(1), pages 183-199.
    8. Allen, Sam & Otero, Noelia, 2023. "Standardised indices to monitor energy droughts," Renewable Energy, Elsevier, vol. 217(C).
    9. François, B. & Puspitarini, H.D. & Volpi, E. & Borga, M., 2022. "Statistical analysis of electricity supply deficits from renewable energy sources across an Alpine transect," Renewable Energy, Elsevier, vol. 201(P1), pages 1200-1212.
    10. António Couto & Paula Costa & Teresa Simões, 2021. "Identification of Extreme Wind Events Using a Weather Type Classification," Energies, MDPI, vol. 14(13), pages 1-16, July.
    11. Nycander, Elis & Morales-España, Germán & Söder, Lennart, 2022. "Power-based modelling of renewable variability in dispatch models with clustered time periods," Renewable Energy, Elsevier, vol. 186(C), pages 944-956.
    12. Kies, Alexander & Schyska, Bruno U. & Bilousova, Mariia & El Sayed, Omar & Jurasz, Jakub & Stoecker, Horst, 2021. "Critical review of renewable generation datasets and their implications for European power system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Gangopadhyay, A. & Seshadri, A.K. & Sparks, N.J. & Toumi, R., 2022. "The role of wind-solar hybrid plants in mitigating renewable energy-droughts," Renewable Energy, Elsevier, vol. 194(C), pages 926-937.
    14. Potisomporn, Panit & Adcock, Thomas A.A. & Vogel, Christopher R., 2024. "Extreme value analysis of wind droughts in Great Britain," Renewable Energy, Elsevier, vol. 221(C).
    15. Pickering, Bryn & Choudhary, Ruchi, 2021. "Quantifying resilience in energy systems with out-of-sample testing," Applied Energy, Elsevier, vol. 285(C).
    16. Nouri, Milad & Homaee, Mehdi, 2022. "Reference crop evapotranspiration for data-sparse regions using reanalysis products," Agricultural Water Management, Elsevier, vol. 262(C).
    17. Abdelaziz, Sara & Sparrow, Sarah N. & Hua, Weiqi & Wallom, David C.H., 2024. "Assessing long-term future climate change impacts on extreme low wind events for offshore wind turbines in the UK exclusive economic zone," Applied Energy, Elsevier, vol. 354(PB).
    18. Tiedemann, Tobias & Dasenbrock, Jan & Kroener, Michael & Satola, Barbara & Reininghaus, Nies & Schneider, Tobias & Vehse, Martin & Schier, Michael & Siefkes, Tjark & Agert, Carsten, 2024. "Supplying electricity and heat to low-energy residential buildings by experimentally integrating a fuel cell electric vehicle with a docking station prototype," Applied Energy, Elsevier, vol. 362(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:espost:224469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.