IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v12y2020i11p202-d447265.html
   My bibliography  Save this article

Portfolio Learning Based on Deep Learning

Author

Listed:
  • Wei Pan

    (School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China)

  • Jide Li

    (School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China)

  • Xiaoqiang Li

    (School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China)

Abstract

Traditional portfolio theory divides stocks into different categories using indicators such as industry, market value, and liquidity, and then selects representative stocks according to them. In this paper, we propose a novel portfolio learning approach based on deep learning and apply it to China’s stock market. Specifically, this method is based on the similarity of deep features extracted from candlestick charts. First, we obtained whole stock information from Tushare, a professional financial data interface. These raw time series data are then plotted into candlestick charts to make an image dataset for studying the stock market. Next, the method extracts high-dimensional features from candlestick charts through an autoencoder. After that, K-means is used to cluster these high-dimensional features. Finally, we choose one stock from each category according to the Sharpe ratio and a low-risk, high-return portfolio is obtained. Extensive experiments are conducted on stocks in the Chinese stock market for evaluation. The results demonstrate that the proposed portfolio outperforms the market’s leading funds and the Shanghai Stock Exchange Composite Index (SSE Index) in a number of metrics.

Suggested Citation

  • Wei Pan & Jide Li & Xiaoqiang Li, 2020. "Portfolio Learning Based on Deep Learning," Future Internet, MDPI, vol. 12(11), pages 1-13, November.
  • Handle: RePEc:gam:jftint:v:12:y:2020:i:11:p:202-:d:447265
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/12/11/202/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/12/11/202/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(5), pages 687-698, October.
    2. Jingyuan Wang & Yang Zhang & Ke Tang & Junjie Wu & Zhang Xiong, 2019. "AlphaStock: A Buying-Winners-and-Selling-Losers Investment Strategy using Interpretable Deep Reinforcement Attention Networks," Papers 1908.02646, arXiv.org.
    3. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(3), pages 381-386, June.
    4. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(4), pages 525-537, August.
    5. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    6. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(2), pages 285-292, April.
    7. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(1), pages 151-159, February.
    8. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    9. Yuxuan Huang & Luiz Fernando Capretz & Danny Ho, 2019. "Neural Network Models for Stock Selection Based on Fundamental Analysis," Papers 1906.05327, arXiv.org.
    10. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gurdal Ertek & Aysha Al-Kaabi & Aktham Issa Maghyereh, 2022. "Analytical Modeling and Empirical Analysis of Binary Options Strategies," Future Internet, MDPI, vol. 14(7), pages 1-23, July.
    2. Lili Sun & Xueyan Liu & Min Zhao & Bo Yang, 2021. "Interpretable Variational Graph Autoencoder with Noninformative Prior," Future Internet, MDPI, vol. 13(2), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dolf Talman & Zaifu Yang, 2012. "On a Parameterized System of Nonlinear Equations with Economic Applications," Journal of Optimization Theory and Applications, Springer, vol. 154(2), pages 644-671, August.
    2. Zhiqiang Zheng & Balaji Padmanabhan & Steven O. Kimbrough, 2003. "On the Existence and Significance of Data Preprocessing Biases in Web-Usage Mining," INFORMS Journal on Computing, INFORMS, vol. 15(2), pages 148-170, May.
    3. Herings, P.J.J. & Talman, A.J.J. & Yang, Z.F., 1999. "Variational Inequality Problems With a Continuum of Solutions : Existence and Computation," Other publications TiSEM 73e2f01b-ad4d-4447-95ba-a, Tilburg University, School of Economics and Management.
    4. Carlos R. Handy & Daniel Vrinceanu & Carl B. Marth & Harold A. Brooks, 2015. "Pointwise Reconstruction of Wave Functions from Their Moments through Weighted Polynomial Expansions: An Alternative Global-Local Quantization Procedure," Mathematics, MDPI, vol. 3(4), pages 1-24, November.
    5. Allen C. Goodman & Miron Stano, 2000. "Hmos and Health Externalities: A Local Public Good Perspective," Public Finance Review, , vol. 28(3), pages 247-269, May.
    6. Bode, Sven & Michaelowa, Axel, 2003. "Avoiding perverse effects of baseline and investment additionality determination in the case of renewable energy projects," Energy Policy, Elsevier, vol. 31(6), pages 505-517, May.
    7. Ala, Guido & Fasshauer, Gregory E. & Francomano, Elisa & Ganci, Salvatore & McCourt, Michael J., 2017. "An augmented MFS approach for brain activity reconstruction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 141(C), pages 3-15.
    8. Bettina Campedelli & Andrea Guerrina & Giulia Romano & Chiara Leardini, 2014. "La performance della rete ospedaliera pubblica della regione Veneto. L?impatto delle variabili ambientali e operative sull?efficienza," MECOSAN, FrancoAngeli Editore, vol. 2014(92), pages 119-142.
    9. Haider A. Khan, 2004. "General Conclusions: From Crisis to a Global Political Economy of Freedom," Palgrave Macmillan Books, in: Global Markets and Financial Crises in Asia, chapter 9, pages 193-211, Palgrave Macmillan.
    10. Penn Loh & Zoë Ackerman & Joceline Fidalgo & Rebecca Tumposky, 2022. "Co-Education/Co-Research Partnership: A Critical Approach to Co-Learning between Dudley Street Neighborhood Initiative and Tufts University," Social Sciences, MDPI, vol. 11(2), pages 1-17, February.
    11. Broekhuis, Manda & Vos, Janita F.J., 2003. "Improving organizational sustainability using a quality perspective," Research Report 03A43, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    12. O'Brien, Raymond & Patacchini, Eleonora, 2003. "Testing the exogeneity assumption in panel data models with "non classical" disturbances," Discussion Paper Series In Economics And Econometrics 0302, Economics Division, School of Social Sciences, University of Southampton.
    13. van der Laan, G. & Talman, A.J.J. & Yang, Z.F., 2002. "Perfection and Stability of Stationary Points with Applications in Noncooperative Games," Discussion Paper 2002-108, Tilburg University, Center for Economic Research.
    14. Edcarlos D. Silva & J. C. Albuquerque & T. R. Cavalcante, 2021. "Fourth-order nonlocal type elliptic problems with indefinite nonlinearities," Partial Differential Equations and Applications, Springer, vol. 2(2), pages 1-22, April.
    15. YongSeog Kim & W. Nick Street & Gary J. Russell & Filippo Menczer, 2005. "Customer Targeting: A Neural Network Approach Guided by Genetic Algorithms," Management Science, INFORMS, vol. 51(2), pages 264-276, February.
    16. Montijano, J.I. & Rández, L. & Van Daele, M. & Calvo, M., 2020. "On the numerical stability of the exponentially fitted methods for first order IVPs," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    17. Yanling Li & Zita Oravecz & Shuai Zhou & Yosef Bodovski & Ian J. Barnett & Guangqing Chi & Yuan Zhou & Naomi P. Friedman & Scott I. Vrieze & Sy-Miin Chow, 2022. "Bayesian Forecasting with a Regime-Switching Zero-Inflated Multilevel Poisson Regression Model: An Application to Adolescent Alcohol Use with Spatial Covariates," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 376-402, June.
    18. Jensen, Nathan M. & Li, Quan & Rahman, Aminur, 2007. "Heard melodies are sweet, but those unheard are sweeter : understanding corruption using cross-national firm-level surveys," Policy Research Working Paper Series 4413, The World Bank.
    19. Oscar J. Cacho & Robyn L. Hean & Russell M. Wise, 2003. "Carbon‐accounting methods and reforestation incentives," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(2), pages 153-179, June.
    20. Walter M. Cadette, 1999. "Financing Long-Term Care: Options for Policy," Economics Working Paper Archive wp_283, Levy Economics Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:12:y:2020:i:11:p:202-:d:447265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.