A Reinforcement Learning Based Encoder-Decoder Framework for Learning Stock Trading Rules
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Peter Gomber & Martin Haferkorn, 2013. "High-Frequency-Trading," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 5(2), pages 97-99, April.
- Matthew F. Dixon & Nicholas G. Polson & Vadim O. Sokolov, 2019. "Deep learning for spatio‐temporal modeling: Dynamic traffic flows and high frequency trading," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(3), pages 788-807, May.
- Conrad, Jennifer & Wahal, Sunil & Xiang, Jin, 2015. "High-frequency quoting, trading, and the efficiency of prices," Journal of Financial Economics, Elsevier, vol. 116(2), pages 271-291.
- Jingyuan Wang & Yang Zhang & Ke Tang & Junjie Wu & Zhang Xiong, 2019. "AlphaStock: A Buying-Winners-and-Selling-Losers Investment Strategy using Interpretable Deep Reinforcement Attention Networks," Papers 1908.02646, arXiv.org.
- Luo, Suyuan & Lin, Xudong & Zheng, Zunxin, 2019. "A novel CNN-DDPG based AI-trader: Performance and roles in business operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 68-79.
- Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
- Allen, Franklin & Karjalainen, Risto, 1999. "Using genetic algorithms to find technical trading rules," Journal of Financial Economics, Elsevier, vol. 51(2), pages 245-271, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yuling Huang & Kai Cui & Yunlin Song & Zongren Chen, 2023. "A Multi-Scaling Reinforcement Learning Trading System Based on Multi-Scaling Convolutional Neural Networks," Mathematics, MDPI, vol. 11(11), pages 1-19, May.
- Gang Hu, 2023. "Advancing Algorithmic Trading: A Multi-Technique Enhancement of Deep Q-Network Models," Papers 2311.05743, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wei Pan & Jide Li & Xiaoqiang Li, 2020. "Portfolio Learning Based on Deep Learning," Future Internet, MDPI, vol. 12(11), pages 1-13, November.
- Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
- Fabrice Rousseau & Herve Boco & Laurent Germain, 2020. "High Frequency Trading: Strategic Competition Between Slow and Fast Traders," Economics Department Working Paper Series n296-20.pdf, Department of Economics, National University of Ireland - Maynooth.
- Tidor-Vlad Pricope, 2021. "Deep Reinforcement Learning in Quantitative Algorithmic Trading: A Review," Papers 2106.00123, arXiv.org.
- Alfonso-Sánchez, Sherly & Solano, Jesús & Correa-Bahnsen, Alejandro & Sendova, Kristina P. & Bravo, Cristián, 2024. "Optimizing credit limit adjustments under adversarial goals using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 315(2), pages 802-817.
- Li, Jiawen & Yu, Tao & Yang, Bo, 2021. "A data-driven output voltage control of solid oxide fuel cell using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 304(C).
- Andriosopoulos, Kostas & Nomikos, Nikos, 2014. "Performance replication of the Spot Energy Index with optimal equity portfolio selection: Evidence from the UK, US and Brazilian markets," European Journal of Operational Research, Elsevier, vol. 234(2), pages 571-582.
- Tulika Saha & Sriparna Saha & Pushpak Bhattacharyya, 2020. "Towards sentiment aided dialogue policy learning for multi-intent conversations using hierarchical reinforcement learning," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
- Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018.
"Long Run Returns Predictability and Volatility with Moving Averages,"
Risks, MDPI, vol. 6(4), pages 1-18, September.
- Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Documentos de Trabajo del ICAE 2018-25, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Chang, C-L. & Ilomäki, J. & Laurila, H. & McAleer, M.J., 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Econometric Institute Research Papers EI2018-39, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Pereira, Robert, 1999.
"Forecasting Ability But No Profitability: An Empirical Evaluation of Genetic Algorithm-optimised Technical Trading Rules,"
MPRA Paper
9055, University Library of Munich, Germany.
- Robert Pereira, 1999. "Forecasting Ability but No Profitability: an Empirical Evaluation of Genetic Algorithm-Optimized Technical Trading Rules," Working Papers 1999.06, School of Economics, La Trobe University.
- Robert Pereira, 1999. "Forecasting Ability but No Profitability: an Empirical Evaluation of Genetic Algorithm-Optimized Technical Trading Rules," Working Papers 1999.06, School of Economics, La Trobe University.
- Bajgrowicz, Pierre & Scaillet, Olivier, 2012.
"Technical trading revisited: False discoveries, persistence tests, and transaction costs,"
Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
- Pierre Bajgrowicz & Olivier Scaillet, 2008. "Technical Trading Revisited: False Discoveries, Persistence Tests, and Transaction Costs," Swiss Finance Institute Research Paper Series 08-05, Swiss Finance Institute, revised Jul 2009.
- Indriawan, Ivan & Martinez, Valeria & Tse, Yiuman, 2021. "The impact of the change in USDA announcement release procedures on agricultural commodity futures," Journal of Commodity Markets, Elsevier, vol. 23(C).
- Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
- Victor Elsa Sapphira & Razali Muhammad Najib & Ali Hishamuddin Mohd., 2023. "The Dynamics of the Impact of the Covid-19 Pandemic on Pan-Asia’s Real Estate Investment Trusts," Real Estate Management and Valuation, Sciendo, vol. 31(4), pages 11-22, December.
- Imen Azzouz & Wiem Fekih Hassen, 2023. "Optimization of Electric Vehicles Charging Scheduling Based on Deep Reinforcement Learning: A Decentralized Approach," Energies, MDPI, vol. 16(24), pages 1-18, December.
- Jacob W. Crandall & Mayada Oudah & Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael A. Goodrich & Iyad Rahwan, 2018.
"Cooperating with machines,"
Nature Communications, Nature, vol. 9(1), pages 1-12, December.
- Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," TSE Working Papers 17-806, Toulouse School of Economics (TSE).
- Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," IAST Working Papers 17-68, Institute for Advanced Study in Toulouse (IAST).
- Jacob Crandall & Mayada Oudah & Fatimah Ishowo-Oloko Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael Goodrich & Iyad Rahwan, 2018. "Cooperating with machines," Post-Print hal-01897802, HAL.
- Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
- Yassine Chemingui & Adel Gastli & Omar Ellabban, 2020. "Reinforcement Learning-Based School Energy Management System," Energies, MDPI, vol. 13(23), pages 1-21, December.
- Serdengeçti, Süleyman & Sensoy, Ahmet & Nguyen, Duc Khuong, 2021.
"Dynamics of return and liquidity (co) jumps in emerging foreign exchange markets,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
- Suleyman Serdengeçti & Ahmet Sensoy & Duc Khuong Nguyen, 2020. "Dynamics of Return and Liquidity (Co)Jumps in Emerging Foreign Exchange Markets," Working Papers 2020-006, Department of Research, Ipag Business School.
- Serdengecti, Suleyman & Sensoy, Ahmet & Nguyen, Duc Khuong, 2020. "Dynamics of Return and Liquidity (Co)Jumps in Emerging Foreign Exchange Markets," MPRA Paper 105162, University Library of Munich, Germany, revised Jan 2021.
- Shrutika Mishra & A. R. Tripathi, 2021. "AI business model: an integrative business approach," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-21, December.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-02-08 (Big Data)
- NEP-CMP-2021-02-08 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2101.03867. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.