IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v259y2017i1p84-99.html
   My bibliography  Save this article

Decision support for selecting the optimal product unpacking location in a retail supply chain

Author

Listed:
  • Broekmeulen, Rob A.C.M.
  • Sternbeck, Michael G.
  • van Donselaar, Karel H.
  • Kuhn, Heinrich

Abstract

The purpose of this research is to investigate the optimal product unpacking location in a bricks-and-mortar grocery retail supply chain. Retail companies increasingly are investing in unpacking operations at their distribution centres (DC). Given the opportunity to unpack at the DC requires a decision as to which products should be selected for unpacking at the DC and which should be shipped to stores in a case pack (CP) or outer pack provided by the supplier. The combined unpacking and unit size decision is evaluated by focusing on the relevant costs at the DC and in-store, i.e., picking in the DC, unpacking either in the DC or in the store, shelf stacking in the store and refilling from the backroom. For replenishing stores, an (R, s, nQ) inventory policy is considered when using the supplier CP and a (R, s, S) policy when the product is unpacked at the DC. Expressions are developed to quantify the relevant volumes and to calculate the corresponding costs on which the unpacking decision is based. A numerical example with empirical data from a European modern retailer demonstrates that unpacking a subset of the stock keeping units (SKUs) at the DC results in a significant cost reduction potential of 8% compared to no unpacking at the DC. The example shows that DC unpacking can generally be highly favorable for a large share of products.

Suggested Citation

  • Broekmeulen, Rob A.C.M. & Sternbeck, Michael G. & van Donselaar, Karel H. & Kuhn, Heinrich, 2017. "Decision support for selecting the optimal product unpacking location in a retail supply chain," European Journal of Operational Research, Elsevier, vol. 259(1), pages 84-99.
  • Handle: RePEc:eee:ejores:v:259:y:2017:i:1:p:84-99
    DOI: 10.1016/j.ejor.2016.09.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716308062
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.09.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karel H. van Donselaar & Vishal Gaur & Tom van Woensel & Rob A. C. M. Broekmeulen & Jan C. Fransoo, 2010. "Ordering Behavior in Retail Stores and Implications for Automated Replenishment," Management Science, INFORMS, vol. 56(5), pages 766-784, May.
    2. Wen, Naijun & Graves, Stephen C. & Justin Ren, Z., 2012. "Ship-pack optimization in a two-echelon distribution system," European Journal of Operational Research, Elsevier, vol. 220(3), pages 777-785.
    3. van den Berg, Jeroen P. & Sharp, Gunter P. & Gademann, A. J. R. M. (Noud) & Pochet, Yves, 1998. "Forward-reserve allocation in a warehouse with unit-load replenishments," European Journal of Operational Research, Elsevier, vol. 111(1), pages 98-113, November.
    4. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    5. Hariga, Moncer A. & Al-Ahmari, Abdulrahman & Mohamed, Abdel-Rahman A., 2007. "A joint optimisation model for inventory replenishment, product assortment, shelf space and display area allocation decisions," European Journal of Operational Research, Elsevier, vol. 181(1), pages 239-251, August.
    6. Rouwenhorst, B. & Reuter, B. & Stockrahm, V. & van Houtum, G. J. & Mantel, R. J. & Zijm, W. H. M., 2000. "Warehouse design and control: Framework and literature review," European Journal of Operational Research, Elsevier, vol. 122(3), pages 515-533, May.
    7. Ketzenberg, Michael & Metters, Richard & Vargas, Vicente, 2002. "Quantifying the benefits of breaking bulk in retail operations," International Journal of Production Economics, Elsevier, vol. 80(3), pages 249-263, December.
    8. Hariga, Moncer A., 2010. "A single-item continuous review inventory problem with space restriction," International Journal of Production Economics, Elsevier, vol. 128(1), pages 153-158, November.
    9. de Souza, Mauricio C. & de Carvalho, Carlos R.V. & Brizon, Wellington B., 2008. "Packing items to feed assembly lines," European Journal of Operational Research, Elsevier, vol. 184(2), pages 480-489, January.
    10. Yu-Sheng Zheng & A. Federgruen, 1991. "Finding Optimal (s, S) Policies Is About As Simple As Evaluating a Single Policy," Operations Research, INFORMS, vol. 39(4), pages 654-665, August.
    11. Sternbeck, Michael G. & Kuhn, Heinrich, 2014. "An integrative approach to determine store delivery patterns in grocery retailing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 205-224.
    12. Holzapfel, Andreas & Hübner, Alexander & Kuhn, Heinrich & Sternbeck, Michael G., 2016. "Delivery pattern and transportation planning in grocery retailing," European Journal of Operational Research, Elsevier, vol. 252(1), pages 54-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calzavara, Martina & Finco, Serena & Persona, Alessandro & Zennaro, Ilenia, 2023. "A cost-based tool for the comparison of different e-grocery supply chain strategies," International Journal of Production Economics, Elsevier, vol. 262(C).
    2. Thomas Wensing & Michael G. Sternbeck & Heinrich Kuhn, 2018. "Optimizing case-pack sizes in the bricks-and-mortar retail trade," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 913-944, October.
    3. Gajanan B. Panchal & Hassan Mirzahosseinian & Sunil Tiwari & Ajay Kumar & Sachin Kumar Mangla, 2023. "Supply chain network redesign problem for major beverage organization in ASEAN region," Annals of Operations Research, Springer, vol. 324(1), pages 1067-1098, May.
    4. Lagorio, Alexandra & Pinto, Roberto, 2021. "Food and grocery retail logistics issues: A systematic literature review," Research in Transportation Economics, Elsevier, vol. 87(C).
    5. Özgün Turgut & Florian Taube & Stefan Minner, 2018. "Data-driven retail inventory management with backroom effect," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 945-968, October.
    6. Schlaich, Tim & Hoberg, Kai, 2024. "When is the next order? Nowcasting channel inventories with Point-of-Sales data to predict the timing of retail orders," European Journal of Operational Research, Elsevier, vol. 315(1), pages 35-49.
    7. Düsterhöft, Tobias & Hübner, Alexander & Schaal, Kai, 2020. "A practical approach to the shelf-space allocation and replenishment problem with heterogeneously sized shelves," European Journal of Operational Research, Elsevier, vol. 282(1), pages 252-266.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Wensing & Michael G. Sternbeck & Heinrich Kuhn, 2018. "Optimizing case-pack sizes in the bricks-and-mortar retail trade," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 913-944, October.
    2. Holzapfel, Andreas & Kuhn, Heinrich & Sternbeck, Michael G., 2018. "Product allocation to different types of distribution center in retail logistics networks," European Journal of Operational Research, Elsevier, vol. 264(3), pages 948-966.
    3. Hübner, Alexander & Schaal, Kai, 2017. "A shelf-space optimization model when demand is stochastic and space-elastic," Omega, Elsevier, vol. 68(C), pages 139-154.
    4. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    5. Alexander Hübner & Kai Schaal, 2017. "Effect of replenishment and backroom on retail shelf-space planning," Business Research, Springer;German Academic Association for Business Research, vol. 10(1), pages 123-156, June.
    6. Boysen, Nils & Emde, Simon & Hoeck, Michael & Kauderer, Markus, 2015. "Part logistics in the automotive industry: Decision problems, literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 242(1), pages 107-120.
    7. Frank, Markus & Ostermeier, Manuel & Holzapfel, Andreas & Hübner, Alexander & Kuhn, Heinrich, 2021. "Optimizing routing and delivery patterns with multi-compartment vehicles," European Journal of Operational Research, Elsevier, vol. 293(2), pages 495-510.
    8. Gagliardi, Jean-Philippe & Ruiz, Angel & Renaud, Jacques, 2008. "Space allocation and stock replenishment synchronization in a distribution center," International Journal of Production Economics, Elsevier, vol. 115(1), pages 19-27, September.
    9. Özgün Turgut & Florian Taube & Stefan Minner, 2018. "Data-driven retail inventory management with backroom effect," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 945-968, October.
    10. Dragan Djurdjević & Nenad Bjelić & Dražen Popović & Milan Andrejić, 2022. "A Combined Dynamic Programming and Simulation Approach to the Sizing of the Low-Level Order-Picking Area," Mathematics, MDPI, vol. 10(20), pages 1-23, October.
    11. N Anken & J-P Gagliardi & J Renaud & A Ruiz, 2011. "Space allocation and aisle positioning for an industrial pick-to-belt system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 38-49, January.
    12. Hübner, Alexander H. & Kuhn, Heinrich, 2012. "Retail category management: State-of-the-art review of quantitative research and software applications in assortment and shelf space management," Omega, Elsevier, vol. 40(2), pages 199-209, April.
    13. Janka Saderova & Andrea Rosova & Marian Sofranko & Peter Kacmary, 2021. "Example of Warehouse System Design Based on the Principle of Logistics," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    14. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    15. Sara Martins & Pedro Amorim & Bernardo Almada-Lobo, 2018. "Delivery mode planning for distribution to brick-and-mortar retail stores: discussion and literature review," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 785-812, December.
    16. Bianchi-Aguiar, Teresa & Hübner, Alexander & Carravilla, Maria Antónia & Oliveira, José Fernando, 2021. "Retail shelf space planning problems: A comprehensive review and classification framework," European Journal of Operational Research, Elsevier, vol. 289(1), pages 1-16.
    17. Jiang, Min & Leung, K.H. & Lyu, Zhongyuan & Huang, George Q., 2020. "Picking-replenishment synchronization for robotic forward-reserve warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    18. Manuel Ostermeier & Andreas Holzapfel & Heinrich Kuhn & Daniel Schubert, 2022. "Integrated zone picking and vehicle routing operations with restricted intermediate storage," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 795-832, September.
    19. Derhami, Shahab & Smith, Jeffrey S. & Gue, Kevin R., 2020. "A simulation-based optimization approach to design optimal layouts for block stacking warehouses," International Journal of Production Economics, Elsevier, vol. 223(C).
    20. Nils Boysen & David Füßler & Konrad Stephan, 2020. "See the light: Optimization of put‐to‐light order picking systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(1), pages 3-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:259:y:2017:i:1:p:84-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.