IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v230y2013i3p495-504.html
   My bibliography  Save this article

Construction heuristics for two-dimensional irregular shape bin packing with guillotine constraints

Author

Listed:
  • Han, Wei
  • Bennell, Julia A.
  • Zhao, Xiaozhou
  • Song, Xiang

Abstract

The paper examines a new problem in the irregular packing literature that has many applications in industry: two-dimensional irregular (convex) bin packing with guillotine constraints. Due to the cutting process of certain materials, cuts are restricted to extend from one edge of the stock-sheet to another, called guillotine cutting. This constraint is common place in glass cutting and is an important constraint in two-dimensional cutting and packing problems. In the literature, various exact and approximate algorithms exist for finding the two dimensional cutting patterns that satisfy the guillotine cutting constraint. However, to the best of our knowledge, all of the algorithms are designed for solving rectangular cutting where cuts are orthogonal with the edges of the stock-sheet. In order to satisfy the guillotine cutting constraint using these approaches, when the pieces are non-rectangular, practitioners implement a two stage approach. First, pieces are enclosed within rectangle shapes and then the rectangles are packed. Clearly, imposing this condition is likely to lead to additional waste. This paper aims to generate guillotine-cutting layouts of irregular shapes using a number of strategies. The investigation compares three two-stage approaches: one approximates pieces by rectangles, the other two approximate pairs of pieces by rectangles using a cluster heuristic or phi-functions for optimal clustering. All three approaches use a competitive algorithm for rectangle bin packing with guillotine constraints. Further, we design and implement a one-stage approach using an adaptive forest search algorithm. Experimental results show the one-stage strategy produces good solutions in less time over the two-stage approach.

Suggested Citation

  • Han, Wei & Bennell, Julia A. & Zhao, Xiaozhou & Song, Xiang, 2013. "Construction heuristics for two-dimensional irregular shape bin packing with guillotine constraints," European Journal of Operational Research, Elsevier, vol. 230(3), pages 495-504.
  • Handle: RePEc:eee:ejores:v:230:y:2013:i:3:p:495-504
    DOI: 10.1016/j.ejor.2013.04.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713003627
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.04.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    2. J. Bennell & G. Scheithauer & Y. Stoyan & T. Romanova, 2010. "Tools of mathematical modeling of arbitrary object packing problems," Annals of Operations Research, Springer, vol. 179(1), pages 343-368, September.
    3. Andrea Lodi & Silvano Martello & Daniele Vigo, 1999. "Heuristic and Metaheuristic Approaches for a Class of Two-Dimensional Bin Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 11(4), pages 345-357, November.
    4. Lodi, Andrea & Martello, Silvano & Vigo, Daniele, 1999. "Approximation algorithms for the oriented two-dimensional bin packing problem," European Journal of Operational Research, Elsevier, vol. 112(1), pages 158-166, January.
    5. Polyakovsky, Sergey & M'Hallah, Rym, 2009. "An agent-based approach to the two-dimensional guillotine bin packing problem," European Journal of Operational Research, Elsevier, vol. 192(3), pages 767-781, February.
    6. Lodi, Andrea & Martello, Silvano & Monaci, Michele, 2002. "Two-dimensional packing problems: A survey," European Journal of Operational Research, Elsevier, vol. 141(2), pages 241-252, September.
    7. Bennell, Julia A. & Oliveira, Jose F., 2008. "The geometry of nesting problems: A tutorial," European Journal of Operational Research, Elsevier, vol. 184(2), pages 397-415, January.
    8. Zeger Degraeve & Martina Vandebroek, 1998. "A Mixed Integer Programming Model for Solving a Layout Problem in the Fashion Industry," Management Science, INFORMS, vol. 44(3), pages 301-310, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Yi-Ping & Cui, Yaodong & Tang, Tianbing, 2015. "Sequential heuristic for the two-dimensional bin-packing problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 43-53.
    2. Leao, Aline A.S. & Toledo, Franklina M.B. & Oliveira, José Fernando & Carravilla, Maria Antónia & Alvarez-Valdés, Ramón, 2020. "Irregular packing problems: A review of mathematical models," European Journal of Operational Research, Elsevier, vol. 282(3), pages 803-822.
    3. Yainier Labrada-Nueva & Martin H. Cruz-Rosales & Juan Manuel Rendón-Mancha & Rafael Rivera-López & Marta Lilia Eraña-Díaz & Marco Antonio Cruz-Chávez, 2021. "Overlap Detection in 2D Amorphous Shapes for Paper Optimization in Digital Printing Presses," Mathematics, MDPI, vol. 9(9), pages 1-22, May.
    4. Bennell, J.A. & Cabo, M. & Martínez-Sykora, A., 2018. "A beam search approach to solve the convex irregular bin packing problem with guillotine guts," European Journal of Operational Research, Elsevier, vol. 270(1), pages 89-102.
    5. Lastra-Díaz, Juan J. & Ortuño, M. Teresa, 2024. "Mixed-integer programming models for irregular strip packing based on vertical slices and feasibility cuts," European Journal of Operational Research, Elsevier, vol. 313(1), pages 69-91.
    6. Irawan, Chandra Ade & Song, Xiang & Jones, Dylan & Akbari, Negar, 2017. "Layout optimisation for an installation port of an offshore wind farm," European Journal of Operational Research, Elsevier, vol. 259(1), pages 67-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irawan, Chandra Ade & Song, Xiang & Jones, Dylan & Akbari, Negar, 2017. "Layout optimisation for an installation port of an offshore wind farm," European Journal of Operational Research, Elsevier, vol. 259(1), pages 67-83.
    2. Martinez-Sykora, Antonio & Alvarez-Valdes, Ramon & Bennell, Julia & Tamarit, Jose Manuel, 2015. "Constructive procedures to solve 2-dimensional bin packing problems with irregular pieces and guillotine cuts," Omega, Elsevier, vol. 52(C), pages 15-32.
    3. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    4. Gardeyn, Jeroen & Wauters, Tony, 2022. "A goal-driven ruin and recreate heuristic for the 2D variable-sized bin packing problem with guillotine constraints," European Journal of Operational Research, Elsevier, vol. 301(2), pages 432-444.
    5. Nestor M Cid-Garcia & Yasmin A Rios-Solis, 2020. "Positions and covering: A two-stage methodology to obtain optimal solutions for the 2d-bin packing problem," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-22, April.
    6. Polyakovsky, Sergey & M'Hallah, Rym, 2009. "An agent-based approach to the two-dimensional guillotine bin packing problem," European Journal of Operational Research, Elsevier, vol. 192(3), pages 767-781, February.
    7. Bennell, Julia A. & Soon Lee, Lai & Potts, Chris N., 2013. "A genetic algorithm for two-dimensional bin packing with due dates," International Journal of Production Economics, Elsevier, vol. 145(2), pages 547-560.
    8. Francisco Trespalacios & Ignacio E. Grossmann, 2017. "Symmetry breaking for generalized disjunctive programming formulation of the strip packing problem," Annals of Operations Research, Springer, vol. 258(2), pages 747-759, November.
    9. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    10. Bayliss, Christopher & Currie, Christine S.M. & Bennell, Julia A. & Martinez-Sykora, Antonio, 2021. "Queue-constrained packing: A vehicle ferry case study," European Journal of Operational Research, Elsevier, vol. 289(2), pages 727-741.
    11. Michele Monaci & Paolo Toth, 2006. "A Set-Covering-Based Heuristic Approach for Bin-Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 71-85, February.
    12. Leao, Aline A.S. & Toledo, Franklina M.B. & Oliveira, José Fernando & Carravilla, Maria Antónia & Alvarez-Valdés, Ramón, 2020. "Irregular packing problems: A review of mathematical models," European Journal of Operational Research, Elsevier, vol. 282(3), pages 803-822.
    13. Mateus Martin & Horacio Hideki Yanasse & Maristela O. Santos & Reinaldo Morabito, 2024. "Models for two-dimensional bin packing problems with customer order spread," Journal of Combinatorial Optimization, Springer, vol. 48(1), pages 1-27, August.
    14. Leung, Stephen C.H. & Zhang, Defu & Sim, Kwang Mong, 2011. "A two-stage intelligent search algorithm for the two-dimensional strip packing problem," European Journal of Operational Research, Elsevier, vol. 215(1), pages 57-69, November.
    15. Önder Aşık & Ender Özcan, 2009. "Bidirectional best-fit heuristic for orthogonal rectangular strip packing," Annals of Operations Research, Springer, vol. 172(1), pages 405-427, November.
    16. Hadjiconstantinou, Eleni & Iori, Manuel, 2007. "A hybrid genetic algorithm for the two-dimensional single large object placement problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1150-1166, December.
    17. Alvarez-Valdes, R. & Martinez, A. & Tamarit, J.M., 2013. "A branch & bound algorithm for cutting and packing irregularly shaped pieces," International Journal of Production Economics, Elsevier, vol. 145(2), pages 463-477.
    18. Crainic, Teodor Gabriel & Perboli, Guido & Tadei, Roberto, 2009. "TS2PACK: A two-level tabu search for the three-dimensional bin packing problem," European Journal of Operational Research, Elsevier, vol. 195(3), pages 744-760, June.
    19. Frank J. Kampas & János D. Pintér & Ignacio Castillo, 2020. "Packing ovals in optimized regular polygons," Journal of Global Optimization, Springer, vol. 77(1), pages 175-196, May.
    20. Defu Zhang & Lijun Wei & Stephen C. H. Leung & Qingshan Chen, 2013. "A Binary Search Heuristic Algorithm Based on Randomized Local Search for the Rectangular Strip-Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 332-345, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:230:y:2013:i:3:p:495-504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.