IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-68640-0_25.html
   My bibliography  Save this book chapter

Placement Problems for Irregular Objects: Mathematical Modeling, Optimization and Applications

In: Optimization Methods and Applications

Author

Listed:
  • Yuriy Stoyan

    (Institute for Mechanical Engineering Problems of the National Academy of Sciences of Ukraine)

  • Alexandr Pankratov

    (Institute for Mechanical Engineering Problems of the National Academy of Sciences of Ukraine)

  • Tatiana Romanova

    (Institute for Mechanical Engineering Problems of the National Academy of Sciences of Ukraine)

Abstract

We describe our methodology for solving NP-hard irregular placement problems. We deal with an accurate representation of objects bounded by circular arcs and line segments and allow their free rotations within a container. We formulate a basic irregular placement problem (IRPP), which covers a wide spectrum of practical packing, cutting, nesting, clustering, and layout problems. We provide a nonlinear programming (NLP) model of the problem, employing the phi-function technique. Our model involves a large number of inequalities with nonsmooth functions. We describe a solution tree for our placement problem and evaluate the number of its terminal nodes. We reduce IRPP problem to a sequence of NLP-subproblems with smooth functions. Our solution strategy is based on combination of discrete and continuous optimization methods. We employ two approaches to solve IRPP problem: a branching scheme algorithm and an efficient optimization algorithm, which involves a feasible starting point and local optimization procedures. To show the benefits of our methodology we present computational results for a number of new challenger and the best known benchmark instances.

Suggested Citation

  • Yuriy Stoyan & Alexandr Pankratov & Tatiana Romanova, 2017. "Placement Problems for Irregular Objects: Mathematical Modeling, Optimization and Applications," Springer Optimization and Its Applications, in: Sergiy Butenko & Panos M. Pardalos & Volodymyr Shylo (ed.), Optimization Methods and Applications, pages 521-559, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-68640-0_25
    DOI: 10.1007/978-3-319-68640-0_25
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas Fischer & Igor Litvinchev & Tetyana Romanova & Petro Stetsyuk & Georgiy Yaskov, 2023. "Quasi-Packing Different Spheres with Ratio Conditions in a Spherical Container," Mathematics, MDPI, vol. 11(9), pages 1-19, April.
    2. Lastra-Díaz, Juan J. & Ortuño, M. Teresa, 2024. "Mixed-integer programming models for irregular strip packing based on vertical slices and feasibility cuts," European Journal of Operational Research, Elsevier, vol. 313(1), pages 69-91.
    3. Josef Kallrath & Tatiana Romanova & Alexander Pankratov & Igor Litvinchev & Luis Infante, 2023. "Packing convex polygons in minimum-perimeter convex hulls," Journal of Global Optimization, Springer, vol. 85(1), pages 39-59, January.
    4. Leao, Aline A.S. & Toledo, Franklina M.B. & Oliveira, José Fernando & Carravilla, Maria Antónia & Alvarez-Valdés, Ramón, 2020. "Irregular packing problems: A review of mathematical models," European Journal of Operational Research, Elsevier, vol. 282(3), pages 803-822.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-68640-0_25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.