IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v253y2016i3p570-583.html
   My bibliography  Save this article

Robust mixed-integer linear programming models for the irregular strip packing problem

Author

Listed:
  • Cherri, Luiz H.
  • Mundim, Leandro R.
  • Andretta, Marina
  • Toledo, Franklina M.B.
  • Oliveira, José F.
  • Carravilla, Maria Antónia

Abstract

Two-dimensional irregular strip packing problems are cutting and packing problems where small pieces have to be cut from a larger object, involving a non-trivial handling of geometry. Increasingly sophisticated and complex heuristic approaches have been developed to address these problems but, despite the apparently good quality of the solutions, there is no guarantee of optimality. Therefore, mixed-integer linear programming (MIP) models started to be developed. However, these models are heavily limited by the complexity of the geometry handling algorithms needed for the piece non-overlapping constraints. This led to pieces simplifications to specialize the developed mathematical models. In this paper, to overcome these limitations, two robust MIP models are proposed. In the first model (DTM) the non-overlapping constraints are stated based on direct trigonometry, while in the second model (NFP−CM) pieces are first decomposed into convex parts and then the non-overlapping constraints are written based on nofit polygons of the convex parts. Both approaches are robust in terms of the type of geometries they can address, considering any kind of non-convex polygon with or without holes. They are also simpler to implement than previous models. This simplicity allowed to consider, for the first time, a variant of the models that deals with piece rotations. Computational experiments with benchmark instances show that NFP−CM outperforms both DTM and the best exact model published in the literature. New real-world based instances with more complex geometries are proposed and used to verify the robustness of the new models.

Suggested Citation

  • Cherri, Luiz H. & Mundim, Leandro R. & Andretta, Marina & Toledo, Franklina M.B. & Oliveira, José F. & Carravilla, Maria Antónia, 2016. "Robust mixed-integer linear programming models for the irregular strip packing problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 570-583.
  • Handle: RePEc:eee:ejores:v:253:y:2016:i:3:p:570-583
    DOI: 10.1016/j.ejor.2016.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716301370
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.03.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    2. Egeblad, Jens & Nielsen, Benny K. & Odgaard, Allan, 2007. "Fast neighborhood search for two- and three-dimensional nesting problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1249-1266, December.
    3. Toledo, Franklina M.B. & Carravilla, Maria Antónia & Ribeiro, Cristina & Oliveira, José F. & Gomes, A. Miguel, 2013. "The Dotted-Board Model: A new MIP model for nesting irregular shapes," International Journal of Production Economics, Elsevier, vol. 145(2), pages 478-487.
    4. Alvarez-Valdes, R. & Martinez, A. & Tamarit, J.M., 2013. "A branch & bound algorithm for cutting and packing irregularly shaped pieces," International Journal of Production Economics, Elsevier, vol. 145(2), pages 463-477.
    5. Gomes, A. Miguel & Oliveira, Jose F., 2006. "Solving Irregular Strip Packing problems by hybridising simulated annealing and linear programming," European Journal of Operational Research, Elsevier, vol. 171(3), pages 811-829, June.
    6. Elkeran, Ahmed, 2013. "A new approach for sheet nesting problem using guided cuckoo search and pairwise clustering," European Journal of Operational Research, Elsevier, vol. 231(3), pages 757-769.
    7. Bennell, Julia A. & Oliveira, Jose F., 2008. "The geometry of nesting problems: A tutorial," European Journal of Operational Research, Elsevier, vol. 184(2), pages 397-415, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Weimiao & Deng, Tianhu & Li, Jianbin, 2019. "Product packing and stacking under uncertainty: A robust approach," European Journal of Operational Research, Elsevier, vol. 277(3), pages 903-917.
    2. Demiröz, Barış Evrim & Altınel, İ. Kuban & Akarun, Lale, 2019. "Rectangle blanket problem: Binary integer linear programming formulation and solution algorithms," European Journal of Operational Research, Elsevier, vol. 277(1), pages 62-83.
    3. Luiz H. Cherri & Adriana C. Cherri & Edilaine M. Soler, 2018. "Mixed integer quadratically-constrained programming model to solve the irregular strip packing problem with continuous rotations," Journal of Global Optimization, Springer, vol. 72(1), pages 89-107, September.
    4. Akang Wang & Christopher L. Hanselman & Chrysanthos E. Gounaris, 2018. "A customized branch-and-bound approach for irregular shape nesting," Journal of Global Optimization, Springer, vol. 71(4), pages 935-955, August.
    5. Longhui Meng & Liang Ding & Ray Tahir Mushtaq & Saqib Anwar & Aqib Mashood Khan, 2024. "Efficient Packing of 2D Irregular Parts: A Hybrid Approach Incorporating a Modified Genetic Algorithm and Image Processing," Mathematics, MDPI, vol. 12(22), pages 1-21, November.
    6. Igor Kierkosz & Maciej Łuczak, 2019. "A one-pass heuristic for nesting problems," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(1), pages 37-60.
    7. Sato, André Kubagawa & Martins, Thiago Castro & Gomes, Antonio Miguel & Tsuzuki, Marcos Sales Guerra, 2019. "Raster penetration map applied to the irregular packing problem," European Journal of Operational Research, Elsevier, vol. 279(2), pages 657-671.
    8. Qiang Luo & Yunqing Rao, 2022. "Improved Sliding Algorithm for Generating No-Fit Polygon in the 2D Irregular Packing Problem," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    9. Ji, Ling & Zhang, Bei-Bei & Huang, Guo-He & Xie, Yu-Lei & Niu, Dong-Xiao, 2018. "GHG-mitigation oriented and coal-consumption constrained inexact robust model for regional energy structure adjustment – A case study for Jiangsu Province, China," Renewable Energy, Elsevier, vol. 123(C), pages 549-562.
    10. Nascimento, Paulo Jorge & Silva, Cristóvão & Antunes, Carlos Henggeler & Moniz, Samuel, 2024. "Optimal decomposition approach for solving large nesting and scheduling problems of additive manufacturing systems," European Journal of Operational Research, Elsevier, vol. 317(1), pages 92-110.
    11. Josef Kallrath & Joonghyun Ryu & Chanyoung Song & Mokwon Lee & Deok-Soo Kim, 2021. "Near optimal minimal convex hulls of disks," Journal of Global Optimization, Springer, vol. 80(3), pages 551-594, July.
    12. Germán Pantoja-Benavides & David Álvarez-Martínez & Francisco Parreño Torres, 2024. "The Normalized Direct Trigonometry Model for the Two-Dimensional Irregular Strip Packing Problem," Mathematics, MDPI, vol. 12(15), pages 1-25, August.
    13. Leao, Aline A.S. & Toledo, Franklina M.B. & Oliveira, José Fernando & Carravilla, Maria Antónia & Alvarez-Valdés, Ramón, 2020. "Irregular packing problems: A review of mathematical models," European Journal of Operational Research, Elsevier, vol. 282(3), pages 803-822.
    14. Jie Fang & Yunqing Rao & Xusheng Zhao & Bing Du, 2023. "A Hybrid Reinforcement Learning Algorithm for 2D Irregular Packing Problems," Mathematics, MDPI, vol. 11(2), pages 1-17, January.
    15. Hu, Xiaoxuan & Zhu, Waiming & Ma, Huawei & An, Bo & Zhi, Yanling & Wu, Yi, 2021. "Orientational variable-length strip covering problem: A branch-and-price-based algorithm," European Journal of Operational Research, Elsevier, vol. 289(1), pages 254-269.
    16. Kimms, Alf & Király, Hédi, 2023. "An extended model formulation for the two-dimensional irregular strip packing problem considering general industry-relevant aspects," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1202-1218.
    17. Longhui Meng & Liang Ding & Aqib Mashood Khan & Ray Tahir Mushtaq & Mohammed Alkahtani, 2024. "Optimizing Two-Dimensional Irregular Pattern Packing with Advanced Overlap Optimization Techniques," Mathematics, MDPI, vol. 12(17), pages 1-19, August.
    18. Bennell, J.A. & Cabo, M. & Martínez-Sykora, A., 2018. "A beam search approach to solve the convex irregular bin packing problem with guillotine guts," European Journal of Operational Research, Elsevier, vol. 270(1), pages 89-102.
    19. Lastra-Díaz, Juan J. & Ortuño, M. Teresa, 2024. "Mixed-integer programming models for irregular strip packing based on vertical slices and feasibility cuts," European Journal of Operational Research, Elsevier, vol. 313(1), pages 69-91.
    20. Cherri, Luiz Henrique & Carravilla, Maria Antónia & Ribeiro, Cristina & Toledo, Franklina Maria Bragion, 2019. "Optimality in nesting problems: New constraint programming models and a new global constraint for non-overlap," Operations Research Perspectives, Elsevier, vol. 6(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sato, André Kubagawa & Martins, Thiago Castro & Gomes, Antonio Miguel & Tsuzuki, Marcos Sales Guerra, 2019. "Raster penetration map applied to the irregular packing problem," European Journal of Operational Research, Elsevier, vol. 279(2), pages 657-671.
    2. Igor Kierkosz & Maciej Łuczak, 2019. "A one-pass heuristic for nesting problems," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(1), pages 37-60.
    3. Umetani, Shunji & Murakami, Shohei, 2022. "Coordinate descent heuristics for the irregular strip packing problem of rasterized shapes," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1009-1026.
    4. Cherri, Luiz Henrique & Carravilla, Maria Antónia & Ribeiro, Cristina & Toledo, Franklina Maria Bragion, 2019. "Optimality in nesting problems: New constraint programming models and a new global constraint for non-overlap," Operations Research Perspectives, Elsevier, vol. 6(C).
    5. Leao, Aline A.S. & Toledo, Franklina M.B. & Oliveira, José Fernando & Carravilla, Maria Antónia & Alvarez-Valdés, Ramón, 2020. "Irregular packing problems: A review of mathematical models," European Journal of Operational Research, Elsevier, vol. 282(3), pages 803-822.
    6. Lastra-Díaz, Juan J. & Ortuño, M. Teresa, 2024. "Mixed-integer programming models for irregular strip packing based on vertical slices and feasibility cuts," European Journal of Operational Research, Elsevier, vol. 313(1), pages 69-91.
    7. Miguel Santoro & Felipe Lemos, 2015. "Irregular packing: MILP model based on a polygonal enclosure," Annals of Operations Research, Springer, vol. 235(1), pages 693-707, December.
    8. Akang Wang & Christopher L. Hanselman & Chrysanthos E. Gounaris, 2018. "A customized branch-and-bound approach for irregular shape nesting," Journal of Global Optimization, Springer, vol. 71(4), pages 935-955, August.
    9. J A Bennell & J F Oliveira, 2009. "A tutorial in irregular shape packing problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 93-105, May.
    10. Luiz H. Cherri & Adriana C. Cherri & Edilaine M. Soler, 2018. "Mixed integer quadratically-constrained programming model to solve the irregular strip packing problem with continuous rotations," Journal of Global Optimization, Springer, vol. 72(1), pages 89-107, September.
    11. Kimms, Alf & Király, Hédi, 2023. "An extended model formulation for the two-dimensional irregular strip packing problem considering general industry-relevant aspects," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1202-1218.
    12. Demiröz, Barış Evrim & Altınel, İ. Kuban & Akarun, Lale, 2019. "Rectangle blanket problem: Binary integer linear programming formulation and solution algorithms," European Journal of Operational Research, Elsevier, vol. 277(1), pages 62-83.
    13. Toledo, Franklina M.B. & Carravilla, Maria Antónia & Ribeiro, Cristina & Oliveira, José F. & Gomes, A. Miguel, 2013. "The Dotted-Board Model: A new MIP model for nesting irregular shapes," International Journal of Production Economics, Elsevier, vol. 145(2), pages 478-487.
    14. Alvarez-Valdes, R. & Martinez, A. & Tamarit, J.M., 2013. "A branch & bound algorithm for cutting and packing irregularly shaped pieces," International Journal of Production Economics, Elsevier, vol. 145(2), pages 463-477.
    15. Martinez-Sykora, Antonio & Alvarez-Valdes, Ramon & Bennell, Julia & Tamarit, Jose Manuel, 2015. "Constructive procedures to solve 2-dimensional bin packing problems with irregular pieces and guillotine cuts," Omega, Elsevier, vol. 52(C), pages 15-32.
    16. Chehrazad, Sahar & Roose, Dirk & Wauters, Tony, 2022. "A fast and scalable bottom-left-fill algorithm to solve nesting problems using a semi-discrete representation," European Journal of Operational Research, Elsevier, vol. 300(3), pages 809-826.
    17. Egeblad, Jens & Garavelli, Claudio & Lisi, Stefano & Pisinger, David, 2010. "Heuristics for container loading of furniture," European Journal of Operational Research, Elsevier, vol. 200(3), pages 881-892, February.
    18. Elkeran, Ahmed, 2013. "A new approach for sheet nesting problem using guided cuckoo search and pairwise clustering," European Journal of Operational Research, Elsevier, vol. 231(3), pages 757-769.
    19. E. K. Burke & R. S. R. Hellier & G. Kendall & G. Whitwell, 2010. "Irregular Packing Using the Line and Arc No-Fit Polygon," Operations Research, INFORMS, vol. 58(4-part-1), pages 948-970, August.
    20. Martinez-Sykora, A. & Alvarez-Valdes, R. & Bennell, J.A. & Ruiz, R. & Tamarit, J.M., 2017. "Matheuristics for the irregular bin packing problem with free rotations," European Journal of Operational Research, Elsevier, vol. 258(2), pages 440-455.

    More about this item

    Keywords

    Packing; Cutting; Nesting; MIP models;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:253:y:2016:i:3:p:570-583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.