IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v54y2016i3p712-721.html
   My bibliography  Save this article

A semi-continuous MIP model for the irregular strip packing problem

Author

Listed:
  • Aline A.S. Leao
  • Franklina M.B. Toledo
  • José Fernando Oliveira
  • Maria Antónia Carravilla

Abstract

Solving nesting problems involves the waste minimisation in cutting processes, and therefore it is not only economically relevant for many industries but has also an important environmental impact, as the raw materials that are cut are usually a natural resource. However, very few exact approaches have been proposed in the literature for the nesting problem (also known as irregular packing problem), and the majority of the known approaches are heuristic algorithms, leading to suboptimal solutions. The few mathematical programming models known for this problem can be divided into discrete and continuous models, based on how the placement coordinates of the pieces to be cut are dealt with. In this paper, we propose an innovative semi-continuous mixed-integer programming model for two-dimensional cutting and packing problems with irregular shaped pieces. The model aims to exploit the advantages of the two previous classes of approaches and discretises the -axis while keeping the -coordinate continuous. The board can therefore be seen as a set of stripes. Computational results show that the model, when solved by a commercial solver, can deal with large problems and determine the optimal solution for smaller instances, but as it happens with discrete models, the optimal solution value depends on the discretisation step that is used.

Suggested Citation

  • Aline A.S. Leao & Franklina M.B. Toledo & José Fernando Oliveira & Maria Antónia Carravilla, 2016. "A semi-continuous MIP model for the irregular strip packing problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 712-721, February.
  • Handle: RePEc:taf:tprsxx:v:54:y:2016:i:3:p:712-721
    DOI: 10.1080/00207543.2015.1041571
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2015.1041571
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2015.1041571?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Igor Kierkosz & Maciej Łuczak, 2019. "A one-pass heuristic for nesting problems," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(1), pages 37-60.
    2. Germán Pantoja-Benavides & David Álvarez-Martínez & Francisco Parreño Torres, 2024. "The Normalized Direct Trigonometry Model for the Two-Dimensional Irregular Strip Packing Problem," Mathematics, MDPI, vol. 12(15), pages 1-25, August.
    3. Leao, Aline A.S. & Toledo, Franklina M.B. & Oliveira, José Fernando & Carravilla, Maria Antónia & Alvarez-Valdés, Ramón, 2020. "Irregular packing problems: A review of mathematical models," European Journal of Operational Research, Elsevier, vol. 282(3), pages 803-822.
    4. Kimms, Alf & Király, Hédi, 2023. "An extended model formulation for the two-dimensional irregular strip packing problem considering general industry-relevant aspects," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1202-1218.
    5. Bennell, J.A. & Cabo, M. & Martínez-Sykora, A., 2018. "A beam search approach to solve the convex irregular bin packing problem with guillotine guts," European Journal of Operational Research, Elsevier, vol. 270(1), pages 89-102.
    6. Lastra-Díaz, Juan J. & Ortuño, M. Teresa, 2024. "Mixed-integer programming models for irregular strip packing based on vertical slices and feasibility cuts," European Journal of Operational Research, Elsevier, vol. 313(1), pages 69-91.
    7. Cherri, Luiz Henrique & Carravilla, Maria Antónia & Ribeiro, Cristina & Toledo, Franklina Maria Bragion, 2019. "Optimality in nesting problems: New constraint programming models and a new global constraint for non-overlap," Operations Research Perspectives, Elsevier, vol. 6(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:54:y:2016:i:3:p:712-721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.