Generalized quantile and expectile properties for shape constrained nonparametric estimation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ejor.2023.04.004
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Keshvari, Abolfazl & Kuosmanen, Timo, 2013. "Stochastic non-convex envelopment of data: Applying isotonic regression to frontier estimation," European Journal of Operational Research, Elsevier, vol. 231(2), pages 481-491.
- Simar, Léopold & Vanhems, Anne, 2012.
"Probabilistic characterization of directional distances and their robust versions,"
Journal of Econometrics, Elsevier, vol. 166(2), pages 342-354.
- Simar, Léopold & Vanhems, Anne, 2010. "Probabilistic Characterization of Directional Distances and their Robust Versions," TSE Working Papers 10-195, Toulouse School of Economics (TSE).
- Simar, Leopold & Vanhems, Anne, 2012. "Probabilistic characterization of directionaldistances and their robustversions," LIDAM Reprints ISBA 2012003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Simar, Leopold & Vanhems, Anne, 2010. "Probabilistic characterization of directional distances and their robust versions," LIDAM Discussion Papers ISBA 2010040, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Timo Kuosmanen & Andrew Johnson & Antti Saastamoinen, 2015. "Stochastic Nonparametric Approach to Efficiency Analysis: A Unified Framework," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 7, pages 191-244, Springer.
- GIJBELS, Irène & MAMMEN, Enno & PARK, Byeong U. & SIMAR, Léopold, 1997.
"On estimation of monotone and concave frontier functions,"
LIDAM Discussion Papers CORE
1997031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- GIJBELS, Irène & MAMMEN, Enno & PARK, Byeong U. & SIMAR, Léopold, 1999. "On estimation of monotone and concave frontier functions," LIDAM Reprints CORE 1392, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Gijbels, Irène & Mammen, Enno & Park, Byeong U. & Simar, Léopold, 1998. "On estimation of monotone and concave frontier functions," SFB 373 Discussion Papers 1998,9, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
- De Rossi, Giuliano & Harvey, Andrew, 2009.
"Quantiles, expectiles and splines,"
Journal of Econometrics, Elsevier, vol. 152(2), pages 179-185, October.
- DeRossi, G. & Harvey, A., 2007. "Quantiles, Expectiles and Splines," Cambridge Working Papers in Economics 0660, Faculty of Economics, University of Cambridge.
- DeRossi, G. & Harvey, A., 2007. "Quantiles, Expectiles and Splines," Cambridge Working Papers in Economics 0702, Faculty of Economics, University of Cambridge.
- Wheelock, David C. & Wilson, Paul W., 2009. "Robust Nonparametric Quantile Estimation of Efficiency and Productivity Change in U.S. Commercial Banking, 1985–2004," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(3), pages 354-368.
- Rahul Mazumder & Arkopal Choudhury & Garud Iyengar & Bodhisattva Sen, 2019. "A Computational Framework for Multivariate Convex Regression and Its Variants," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 318-331, January.
- Diogo Cunha Ferreira & Rui Cunha Marques, 2020. "A step forward on order-α robust nonparametric method: inclusion of weight restrictions, convexity and non-variable returns to scale," Operational Research, Springer, vol. 20(2), pages 1011-1046, June.
- Dai, Sheng, 2023. "Variable selection in convex quantile regression: L1-norm or L0-norm regularization?," European Journal of Operational Research, Elsevier, vol. 305(1), pages 338-355.
- Abdelaati Daouia & Léopold Simar & Paul W. Wilson, 2017.
"Measuring firm performance using nonparametric quantile-type distances,"
Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 156-181, March.
- Daouia, Abdelaati & Simar, Léopold & Wilson, Paul, 2013. "Measuring Firm Performance using Nonparametric Quantile-type Distances," TSE Working Papers 13-412, Toulouse School of Economics (TSE), revised Nov 2013.
- Daouia, Abdelaati & Simar, Leopold & Wilson, Paul, 2017. "Measuring Firm Performance Using Nonparametric Quantile-type Distances," LIDAM Reprints ISBA 2017006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Daouia, Abdelaati & Simar, Leopold & Wilson, Paul, 2013. "Measuring Firm Performance using Nonparametric Quantile-type Distances," LIDAM Discussion Papers ISBA 2013014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Jradi, Samah & Ruggiero, John, 2019. "Stochastic data envelopment analysis: A quantile regression approach to estimate the production frontier," European Journal of Operational Research, Elsevier, vol. 278(2), pages 385-393.
- Daisuke Yagi & Yining Chen & Andrew L. Johnson & Timo Kuosmanen, 2020.
"Shape-Constrained Kernel-Weighted Least Squares: Estimating Production Functions for Chilean Manufacturing Industries,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 43-54, January.
- Yagi, Daisuke & Chen, Yining & Johnson, Andrew L. & Kuosmanen, Timo, 2018. "Shape constrained kernel-weighted least squares: Estimating production functions for Chilean manufacturing industries," LSE Research Online Documents on Economics 86556, London School of Economics and Political Science, LSE Library.
- Lee, Chia-Yen & Johnson, Andrew L. & Moreno-Centeno, Erick & Kuosmanen, Timo, 2013. "A more efficient algorithm for Convex Nonparametric Least Squares," European Journal of Operational Research, Elsevier, vol. 227(2), pages 391-400.
- Cordero, José Manuel & Santín, Daniel & Sicilia, Gabriela, 2015. "Testing the accuracy of DEA estimates under endogeneity through a Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 244(2), pages 511-518.
- Timo Kuosmanen, 2008. "Representation theorem for convex nonparametric least squares," Econometrics Journal, Royal Economic Society, vol. 11(2), pages 308-325, July.
- Carvalho, Pedro & Marques, Rui Cunha, 2014. "Computing economies of vertical integration, economies of scope and economies of scale using partial frontier nonparametric methods," European Journal of Operational Research, Elsevier, vol. 234(1), pages 292-307.
- Kuosmanen, Timo & Zhou, Xun & Dai, Sheng, 2020. "How much climate policy has cost for OECD countries?," World Development, Elsevier, vol. 125(C).
- Kounetas, Konstantinos E. & Polemis, Michael L. & Tzeremes, Nickolaos G., 2021. "Measurement of eco-efficiency and convergence: Evidence from a non-parametric frontier analysis," European Journal of Operational Research, Elsevier, vol. 291(1), pages 365-378.
- F Pedraja-Chaparro & J Salinas-Jiménez & P Smith, 1999. "On the quality of the data envelopment analysis model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(6), pages 636-644, June.
- Dai, Sheng & Zhou, Xun & Kuosmanen, Timo, 2020. "Forward-looking assessment of the GHG abatement cost: Application to China," Energy Economics, Elsevier, vol. 88(C).
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
- Eunji Lim & Peter W. Glynn, 2012. "Consistency of Multidimensional Convex Regression," Operations Research, INFORMS, vol. 60(1), pages 196-208, February.
- Aragon, Y. & Daouia, A. & Thomas-Agnan, C., 2005. "Nonparametric Frontier Estimation: A Conditional Quantile-Based Approach," Econometric Theory, Cambridge University Press, vol. 21(2), pages 358-389, April.
- Timo Kuosmanen & Andrew L. Johnson, 2010. "Data Envelopment Analysis as Nonparametric Least-Squares Regression," Operations Research, INFORMS, vol. 58(1), pages 149-160, February.
- Wang, Yongqiao & Wang, Shouyang & Dang, Chuangyin & Ge, Wenxiu, 2014. "Nonparametric quantile frontier estimation under shape restriction," European Journal of Operational Research, Elsevier, vol. 232(3), pages 671-678.
- Rajiv D. Banker & Srikant M. Datar & Chris F. Kemerer, 1991. "A Model to Evaluate Variables Impacting the Productivity of Software Maintenance Projects," Management Science, INFORMS, vol. 37(1), pages 1-18, January.
- Shirong Zhao & Guangshun Qiao, 2022. "The shadow prices of CO2, SO2 and NOx for U.S. coal power industry 2010–2017: a convex quantile regression method," Journal of Productivity Analysis, Springer, vol. 57(3), pages 243-253, June.
- Aigner, D J & Amemiya, Takeshi & Poirier, Dale J, 1976. "On the Estimation of Production Frontiers: Maximum Likelihood Estimation of the Parameters of a Discontinuous Density Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 17(2), pages 377-396, June.
- Martins-Filho, Carlos & Yao, Feng, 2008. "A smooth nonparametric conditional quantile frontier estimator," Journal of Econometrics, Elsevier, vol. 143(2), pages 317-333, April.
- Wheelock, David C. & Wilson, Paul W., 2013. "The evolution of cost-productivity and efficiency among US credit unions," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 75-88.
- Daouia, Abdelaati & Simar, Leopold, 2007. "Nonparametric efficiency analysis: A multivariate conditional quantile approach," Journal of Econometrics, Elsevier, vol. 140(2), pages 375-400, October.
- Kuosmanen, Timo & Zhou, Xun, 2021. "Shadow prices and marginal abatement costs: Convex quantile regression approach," European Journal of Operational Research, Elsevier, vol. 289(2), pages 666-675.
- Eunji Lim, 2014. "On Convergence Rates of Convex Regression in Multiple Dimensions," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 616-628, August.
- Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
- Polemis, Michael L. & Stengos, Thanasis & Tzeremes, Panayiotis & Tzeremes, Nickolaos G., 2021. "Quantile eco-efficiency estimation and convergence: A nonparametric frontier approach," Economics Letters, Elsevier, vol. 202(C).
- Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
- Xi Chen & Qihang Lin & Bodhisattva Sen, 2020. "On Degrees of Freedom of Projection Estimators With Applications to Multivariate Nonparametric Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 173-186, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sheng Dai & Natalia Kuosmanen & Timo Kuosmanen & Juuso Liesio, 2023. "Optimal resource allocation: Convex quantile regression approach," Papers 2311.06590, arXiv.org.
- Dai, Sheng & Kuosmanen, Timo & Zhou, Xun, 2023. "Non-crossing convex quantile regression," Economics Letters, Elsevier, vol. 233(C).
- Kuosmanen, Natalia & Kuosmanen, Timo & Maczulskij, Terhi & Zhou, Xun, 2024. "Least-cost Decarbonization Pathways for Electricity Generation in Finland: A Convex Quantile Regression Approach," ETLA Working Papers 114, The Research Institute of the Finnish Economy.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dai, Sheng, 2023. "Variable selection in convex quantile regression: L1-norm or L0-norm regularization?," European Journal of Operational Research, Elsevier, vol. 305(1), pages 338-355.
- Liao, Zhiqiang & Dai, Sheng & Kuosmanen, Timo, 2024. "Convex support vector regression," European Journal of Operational Research, Elsevier, vol. 313(3), pages 858-870.
- Kuosmanen, Timo & Zhou, Xun, 2021. "Shadow prices and marginal abatement costs: Convex quantile regression approach," European Journal of Operational Research, Elsevier, vol. 289(2), pages 666-675.
- Léopold Simar & Paul W. Wilson, 2015.
"Statistical Approaches for Non-parametric Frontier Models: A Guided Tour,"
International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
- Simar, Leopold & Wilson, Paul, 2013. "Statistical Approaches for Nonparametric Frontier Models: A Guided Tour," LIDAM Discussion Papers ISBA 2013047, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Simar, Leopold & Wilson, Paul, 2015. "Statistical Approaches for Nonparametric Frontier Models: A Guided Tour," LIDAM Reprints ISBA 2015022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Wang, Yongqiao & Wang, Shouyang & Dang, Chuangyin & Ge, Wenxiu, 2014. "Nonparametric quantile frontier estimation under shape restriction," European Journal of Operational Research, Elsevier, vol. 232(3), pages 671-678.
- Tsionas, Mike G., 2020. "Quantile Stochastic Frontiers," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1177-1184.
- Wen, Xiaojie & Yao, Shunbo & Sauer, Johannes, 2022. "Shadow prices and abatement cost of soil erosion in Shaanxi Province, China: Convex expectile regression approach," Ecological Economics, Elsevier, vol. 201(C).
- Lee, Chia-Yen & Wang, Ke, 2019. "Nash marginal abatement cost estimation of air pollutant emissions using the stochastic semi-nonparametric frontier," European Journal of Operational Research, Elsevier, vol. 273(1), pages 390-400.
- Wei, Xiao & Zhang, Ning, 2020. "The shadow prices of CO2 and SO2 for Chinese Coal-fired Power Plants: A partial frontier approach," Energy Economics, Elsevier, vol. 85(C).
- Olesen, Ole B. & Petersen, Niels Christian, 2016. "Stochastic Data Envelopment Analysis—A review," European Journal of Operational Research, Elsevier, vol. 251(1), pages 2-21.
- Jradi, Samah & Ruggiero, John, 2019. "Stochastic data envelopment analysis: A quantile regression approach to estimate the production frontier," European Journal of Operational Research, Elsevier, vol. 278(2), pages 385-393.
- Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
- Caitlin O’Loughlin & Léopold Simar & Paul W. Wilson, 2023.
"Methodologies for assessing government efficiency,"
Chapters, in: António Afonso & João Tovar Jalles & Ana Venâncio (ed.), Handbook on Public Sector Efficiency, chapter 4, pages 72-101,
Edward Elgar Publishing.
- O’Loughlin, Caitlin & Simar, Léopold & Wilson, Paul, 2021. "Methodologies for assessing government efficiency," LIDAM Discussion Papers ISBA 2021002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- O’Loughlin, Caitlin & Simar, Léopold & Wilson, Paul W., 2023. "Methodologies for assessing government efficiency," LIDAM Reprints ISBA 2023009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Juan Carlos Matallín-Sáez & Amparo Soler-Domínguez & Emili Tortosa-Ausina, 2019.
"Does active management add value? New evidence from a quantile regression approach,"
Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1734-1751, October.
- Amparo Soler Domínguez & Juan Carlos Matallín Sáez & Emili Tortosa-Ausina, 2013. "Does active management add value? New evidence from a quantile regression approach," Working Papers. Serie EC 2013-02, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
- J. Carlos Matallín-Sáez & Amparo Soler-Domínguez & Emili Tortosa-Ausina, 2013. "Does active management add value? New evidence from a quantile regression," Working Papers 2013/01, Economics Department, Universitat Jaume I, Castellón (Spain).
- Cristina Polo & Julián Ramajo & Alejandro Ricci‐Risquete, 2021. "A stochastic semi‐non‐parametric analysis of regional efficiency in the European Union," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(1), pages 7-24, February.
- K. Hervé Dakpo & Yann Desjeux & Laure Latruffe, 2023.
"Cost of abating excess nitrogen on wheat plots in France: An assessment with multi‐technology modelling,"
Journal of Agricultural Economics, Wiley Blackwell, vol. 74(3), pages 800-815, September.
- H Dakpo & Yann Desjeux & Laure Latruffe, 2023. "Cost of abating excess nitrogen on wheat plots in France: An assessment with multi‐technology modelling," Post-Print hal-04081036, HAL.
- Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2021.
"Robustified Expected Maximum Production Frontiers,"
Econometric Theory, Cambridge University Press, vol. 37(2), pages 346-387, April.
- Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Leopold, 2018. "Robustified expected maximum production frontiers," LIDAM Discussion Papers ISBA 2018003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Leopold, 2020. "Robustified expected maximum production frontiers," LIDAM Reprints ISBA 2020003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2018. "Robustified expected maximum production frontiers," TSE Working Papers 17-890, Toulouse School of Economics (TSE).
- Hung-pin Lai & Cliff J. Huang & Tsu-Tan Fu, 2020. "Estimation of the production profile and metafrontier technology gap: a quantile approach," Empirical Economics, Springer, vol. 58(6), pages 2709-2731, June.
- Shirong Zhao & Guangshun Qiao, 2022. "The shadow prices of CO2, SO2 and NOx for U.S. coal power industry 2010–2017: a convex quantile regression method," Journal of Productivity Analysis, Springer, vol. 57(3), pages 243-253, June.
More about this item
Keywords
Data envelopment analysis; Quantile estimation; Quantile property; Expectile property; Shape constraints;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:310:y:2023:i:2:p:914-927. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.