IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v115y2020i529p173-186.html
   My bibliography  Save this article

On Degrees of Freedom of Projection Estimators With Applications to Multivariate Nonparametric Regression

Author

Listed:
  • Xi Chen
  • Qihang Lin
  • Bodhisattva Sen

Abstract

Abstract–In this article, we consider the nonparametric regression problem with multivariate predictors. We provide a characterization of the degrees of freedom and divergence for estimators of the unknown regression function, which are obtained as outputs of linearly constrained quadratic optimization procedures; namely, minimizers of the least-squares criterion with linear constraints and/or quadratic penalties. As special cases of our results, we derive explicit expressions for the degrees of freedom in many nonparametric regression problems, for example, bounded isotonic regression, multivariate (penalized) convex regression, and additive total variation regularization. Our theory also yields, as special cases, known results on the degrees of freedom of many well-studied estimators in the statistics literature, such as ridge regression, Lasso and generalized Lasso. Our results can be readily used to choose the tuning parameter(s) involved in the estimation procedure by minimizing the Stein’s unbiased risk estimate. As a by-product of our analysis we derive an interesting connection between bounded isotonic regression and isotonic regression on a general partially ordered set, which is of independent interest. Supplementary materials for this article are available online.

Suggested Citation

  • Xi Chen & Qihang Lin & Bodhisattva Sen, 2020. "On Degrees of Freedom of Projection Estimators With Applications to Multivariate Nonparametric Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 173-186, January.
  • Handle: RePEc:taf:jnlasa:v:115:y:2020:i:529:p:173-186
    DOI: 10.1080/01621459.2018.1537917
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1537917
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1537917?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dai, Sheng, 2023. "Variable selection in convex quantile regression: L1-norm or L0-norm regularization?," European Journal of Operational Research, Elsevier, vol. 305(1), pages 338-355.
    2. Dai, Sheng & Kuosmanen, Timo & Zhou, Xun, 2023. "Generalized quantile and expectile properties for shape constrained nonparametric estimation," European Journal of Operational Research, Elsevier, vol. 310(2), pages 914-927.
    3. Liao, Zhiqiang & Dai, Sheng & Kuosmanen, Timo, 2024. "Convex support vector regression," European Journal of Operational Research, Elsevier, vol. 313(3), pages 858-870.
    4. Guillaume Allaire Pouliot & Zhen Xie, 2022. "Degrees of Freedom and Information Criteria for the Synthetic Control Method," Papers 2207.02943, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:529:p:173-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.