IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v309y2023i3p958-976.html
   My bibliography  Save this article

Resource-constrained multi-project scheduling problem: A survey

Author

Listed:
  • Gómez Sánchez, Mariam
  • Lalla-Ruiz, Eduardo
  • Fernández Gil, Alejandro
  • Castro, Carlos
  • Voß, Stefan

Abstract

Project Management is becoming increasingly crucial in competitive environments such as manufacturing and the service industries. The Resource-Constrained Multi-Project Scheduling Problem (RCMPSP) consists of assigning start times to jobs corresponding to two or more projects that must be executed simultaneously while respecting the precedence between jobs and limited resources. The existing rise in the study of the RCMPSP resulted in numerous works on the topic while proposing different problem features. This research analyzes different variants of the problem based on aspects related to jobs, projects, relationships, resources, and time management. Moreover, based on the problem variants considered in the collected works, a taxonomy allowing (i) the identification and positioning of each RCMPSP variant and (ii) the analysis of the current state-of-the-art of the problem is proposed. In addition, the solution methods proposed to solve RCMPSPs are classified and analyzed, together with the benchmarks used to validate such approaches. Finally, this review paper discusses the RCMPSP connection to practice and provides future research opportunities in light of recent advances.

Suggested Citation

  • Gómez Sánchez, Mariam & Lalla-Ruiz, Eduardo & Fernández Gil, Alejandro & Castro, Carlos & Voß, Stefan, 2023. "Resource-constrained multi-project scheduling problem: A survey," European Journal of Operational Research, Elsevier, vol. 309(3), pages 958-976.
  • Handle: RePEc:eee:ejores:v:309:y:2023:i:3:p:958-976
    DOI: 10.1016/j.ejor.2022.09.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722007639
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.09.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Suresh & Pankaj Dutta & Karuna Jain, 2015. "Resource Constrained Multi-Project Scheduling Problem with Resource Transfer Times," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(06), pages 1-30, December.
    2. Coelho, José & Vanhoucke, Mario, 2011. "Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers," European Journal of Operational Research, Elsevier, vol. 213(1), pages 73-82, August.
    3. Kolisch, Rainer, 2000. "Integrated scheduling, assembly area- and part-assignment for large-scale, make-to-order assemblies," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 6637, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Ben Issa, Samer & Patterson, Raymond A. & Tu, Yiliu, 2021. "Solving resource-constrained multi-project environment under different activity assumptions," International Journal of Production Economics, Elsevier, vol. 232(C).
    5. A. Alan B. Pritsker & Lawrence J. Waiters & Philip M. Wolfe, 1969. "Multiproject Scheduling with Limited Resources: A Zero-One Programming Approach," Management Science, INFORMS, vol. 16(1), pages 93-108, September.
    6. Chunhua Ju & Tinggui Chen, 2012. "Simplifying Multiproject Scheduling Problem Based on Design Structure Matrix and Its Solution by an Improved aiNet Algorithm," Discrete Dynamics in Nature and Society, Hindawi, vol. 2012, pages 1-22, May.
    7. Giuseppe Confessore & Stefano Giordani & Silvia Rismondo, 2007. "A market-based multi-agent system model for decentralized multi-project scheduling," Annals of Operations Research, Springer, vol. 150(1), pages 115-135, March.
    8. John Dumond & Vincent A. Mabert, 1988. "Evaluating Project Scheduling and Due Date Assignment Procedures: An Experimental Analysis," Management Science, INFORMS, vol. 34(1), pages 101-118, January.
    9. Geiger, Martin Josef, 2017. "A multi-threaded local search algorithm and computer implementation for the multi-mode, resource-constrained multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 256(3), pages 729-741.
    10. Krüger, Doreen & Scholl, Armin, 2009. "A heuristic solution framework for the resource constrained (multi-)project scheduling problem with sequence-dependent transfer times," European Journal of Operational Research, Elsevier, vol. 197(2), pages 492-508, September.
    11. Xiaoming Wang & Qingxin Chen & Ning Mao & Xindu Chen & Zhantao Li, 2015. "Proactive approach for stochastic RCMPSP based on multi-priority rule combinations," International Journal of Production Research, Taylor & Francis Journals, vol. 53(4), pages 1098-1110, February.
    12. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    13. D. G. Malcolm & J. H. Roseboom & C. E. Clark & W. Fazar, 1959. "Application of a Technique for Research and Development Program Evaluation," Operations Research, INFORMS, vol. 7(5), pages 646-669, October.
    14. Huan Neng Chiu & Deng Maw Tsai, 2002. "An efficient search procedure for the resource-constrained multi-project scheduling problem with discounted cash flows," Construction Management and Economics, Taylor & Francis Journals, vol. 20(1), pages 55-66.
    15. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    16. Antonio Lova & Pilar Tormos, 2001. "Analysis of Scheduling Schemes and Heuristic Rules Performance in Resource-Constrained Multiproject Scheduling," Annals of Operations Research, Springer, vol. 102(1), pages 263-286, February.
    17. Browning, Tyson R. & Yassine, Ali A., 2010. "Resource-constrained multi-project scheduling: Priority rule performance revisited," International Journal of Production Economics, Elsevier, vol. 126(2), pages 212-228, August.
    18. Rainer Kolisch & Christian Heimerl, 2012. "An efficient metaheuristic for integrated scheduling and staffing IT projects based on a generalized minimum cost flow network," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(2), pages 111-127, March.
    19. Kolisch, R., 2000. "Integrated scheduling, assembly area- and part-assignment for large-scale, make-to-order assemblies," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 127-141, March.
    20. Yongyi Shou & Wenwen Xiang & Ying Li & Weijian Yao, 2014. "A Multiagent Evolutionary Algorithm for the Resource-Constrained Project Portfolio Selection and Scheduling Problem," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-9, April.
    21. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
    22. Lawrence, Stephen R. & Morton, Thomas E., 1993. "Resource-constrained multi-project scheduling with tardy costs: Comparing myopic, bottleneck, and resource pricing heuristics," European Journal of Operational Research, Elsevier, vol. 64(2), pages 168-187, January.
    23. Walter Gutjahr & Stefan Katzensteiner & Peter Reiter & Christian Stummer & Michaela Denk, 2008. "Competence-driven project portfolio selection, scheduling and staff assignment," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(3), pages 281-306, September.
    24. Beşikci, Umut & Bilge, Ümit & Ulusoy, Gündüz, 2015. "Multi-mode resource constrained multi-project scheduling and resource portfolio problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 22-31.
    25. Rainer Kolisch & Konrad Meyer, 2006. "Selection and Scheduling of Pharmaceutical Research Projects," International Series in Operations Research & Management Science, in: Joanna Józefowska & Jan Weglarz (ed.), Perspectives in Modern Project Scheduling, chapter 0, pages 321-344, Springer.
    26. Speranza, M. Grazia & Vercellis, Carlo, 1993. "Hierarchical models for multi-project planning and scheduling," European Journal of Operational Research, Elsevier, vol. 64(2), pages 312-325, January.
    27. Feifei Li & Zhe Xu, 2018. "A multi-agent system for distributed multi-project scheduling with two-stage decomposition," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-24, October.
    28. Vo[ss], Stefan & Witt, Andreas, 2007. "Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with batching requirements: A real-world application," International Journal of Production Economics, Elsevier, vol. 105(2), pages 445-458, February.
    29. Rob Eynde & Mario Vanhoucke, 2020. "Resource-constrained multi-project scheduling: benchmark datasets and decoupled scheduling," Journal of Scheduling, Springer, vol. 23(3), pages 301-325, June.
    30. Chen, Jiaqiong & Askin, Ronald G., 2009. "Project selection, scheduling and resource allocation with time dependent returns," European Journal of Operational Research, Elsevier, vol. 193(1), pages 23-34, February.
    31. Jeffrey K. Pinto & John E. Prescott, 1990. "Planning And Tactical Factors In The Project Implementation Process," Journal of Management Studies, Wiley Blackwell, vol. 27(3), pages 305-327, May.
    32. Ugur Satic & Peter Jacko & Christopher Kirkbride, 2022. "Performance evaluation of scheduling policies for the dynamic and stochastic resource-constrained multi-project scheduling problem," International Journal of Production Research, Taylor & Francis Journals, vol. 60(4), pages 1411-1423, February.
    33. J. K. Lenstra & A. H. G. Rinnooy Kan, 1978. "Complexity of Scheduling under Precedence Constraints," Operations Research, INFORMS, vol. 26(1), pages 22-35, February.
    34. Chung-Yee Lee & Lei Lei, 2001. "Multiple-Project Scheduling with Controllable Project Duration and Hard Resource Constraint: Some Solvable Cases," Annals of Operations Research, Springer, vol. 102(1), pages 287-307, February.
    35. I. Kurtulus & E. W. Davis, 1982. "Multi-Project Scheduling: Categorization of Heuristic Rules Performance," Management Science, INFORMS, vol. 28(2), pages 161-172, February.
    36. Vercellis, Carlo, 1994. "Constrained multi-project plannings problems: A Lagrangean decomposition approach," European Journal of Operational Research, Elsevier, vol. 78(2), pages 267-275, October.
    37. Anıl Can & Gündüz Ulusoy, 2014. "Multi-project scheduling with two-stage decomposition," Annals of Operations Research, Springer, vol. 217(1), pages 95-116, June.
    38. Mohanty, R. P. & Siddiq, M. K., 1989. "Multiple projects -- Multiple resources constrained scheduling: A multiobjective analysis," Engineering Costs and Production Economics, Elsevier, vol. 18(1), pages 83-92, October.
    39. Jianjiang Wang & Xuejun Hu & Erik Demeulemeester & Yan Zhao, 2021. "A bi-objective robust resource allocation model for the RCPSP considering resource transfer costs," International Journal of Production Research, Taylor & Francis Journals, vol. 59(2), pages 367-387, January.
    40. Mohammad Rostami & Morteza Bagherpour, 2020. "A lagrangian relaxation algorithm for facility location of resource-constrained decentralized multi-project scheduling problems," Operational Research, Springer, vol. 20(2), pages 857-897, June.
    41. Lova, Antonio & Maroto, Concepcion & Tormos, Pilar, 2000. "A multicriteria heuristic method to improve resource allocation in multiproject scheduling," European Journal of Operational Research, Elsevier, vol. 127(2), pages 408-424, December.
    42. Min Tian & Ren Jing Liu & Guang Jun Zhang, 2020. "Solving the resource-constrained multi-project scheduling problem with an improved critical chain method," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(8), pages 1243-1258, August.
    43. Kolisch, Rainer & Sprecher, Arno, 1997. "PSPLIB - A project scheduling problem library : OR Software - ORSEP Operations Research Software Exchange Program," European Journal of Operational Research, Elsevier, vol. 96(1), pages 205-216, January.
    44. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    45. Tsubakitani, Shigeru & Deckro, Richard F., 1990. "A heuristic for multi-project scheduling with limited resources in the housing industry," European Journal of Operational Research, Elsevier, vol. 49(1), pages 80-91, November.
    46. Deckro, Richard F. & Winkofsky, E. P. & E. Hebert, John & Gagnon, Roger, 1991. "A decomposition approach to multi-project scheduling," European Journal of Operational Research, Elsevier, vol. 51(1), pages 110-118, March.
    47. Adhau, Sunil & Mittal, M.L. & Mittal, Abhinav, 2013. "A multi-agent system for decentralized multi-project scheduling with resource transfers," International Journal of Production Economics, Elsevier, vol. 146(2), pages 646-661.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xabier A. Martin & Rosa Herrero & Angel A. Juan & Javier Panadero, 2024. "An Agile Adaptive Biased-Randomized Discrete-Event Heuristic for the Resource-Constrained Project Scheduling Problem," Mathematics, MDPI, vol. 12(12), pages 1-21, June.
    2. Zuo, Fei & Zio, Enrico & Xu, Yue, 2023. "Bi-objective optimization of the scheduling of risk-related resources for risk response," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bredael, Dries & Vanhoucke, Mario, 2023. "Multi-project scheduling: A benchmark analysis of metaheuristic algorithms on various optimisation criteria and due dates," European Journal of Operational Research, Elsevier, vol. 308(1), pages 54-75.
    2. Rob Eynde & Mario Vanhoucke, 2020. "Resource-constrained multi-project scheduling: benchmark datasets and decoupled scheduling," Journal of Scheduling, Springer, vol. 23(3), pages 301-325, June.
    3. Wuliang Peng & Jiali lin & Jingwen Zhang & Liangwei Chen, 2022. "A bi-objective hierarchical program scheduling problem and its solution based on NSGA-III," Annals of Operations Research, Springer, vol. 308(1), pages 389-414, January.
    4. Browning, Tyson R. & Yassine, Ali A., 2010. "Resource-constrained multi-project scheduling: Priority rule performance revisited," International Journal of Production Economics, Elsevier, vol. 126(2), pages 212-228, August.
    5. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    6. Ben Issa, Samer & Patterson, Raymond A. & Tu, Yiliu, 2021. "Solving resource-constrained multi-project environment under different activity assumptions," International Journal of Production Economics, Elsevier, vol. 232(C).
    7. He, Yukang & Jia, Tao & Zheng, Weibo, 2023. "Tabu search for dedicated resource-constrained multiproject scheduling to minimise the maximal cash flow gap under uncertainty," European Journal of Operational Research, Elsevier, vol. 310(1), pages 34-52.
    8. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
    9. Gonçalves, J.F. & Mendes, J.J.M. & Resende, M.G.C., 2008. "A genetic algorithm for the resource constrained multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1171-1190, September.
    10. Krüger, Doreen & Scholl, Armin, 2009. "A heuristic solution framework for the resource constrained (multi-)project scheduling problem with sequence-dependent transfer times," European Journal of Operational Research, Elsevier, vol. 197(2), pages 492-508, September.
    11. Hartmann, Sönke & Briskorn, Dirk, 2008. "A survey of variants and extensions of the resource-constrained project scheduling problem," Working Paper Series 02/2008, Hamburg School of Business Administration (HSBA).
    12. Esmaeil MEHDIZADEH & Hamidreza AKBARI, 2017. "A Novel Vibration Damping Optimization Algorithm for Resource Constrained Multi- Project Scheduling Problem," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(2), pages 291-309.
    13. He, Naihui & Zhang, David Z. & Yuce, Baris, 2022. "Integrated multi-project planning and scheduling - a multiagent approach," European Journal of Operational Research, Elsevier, vol. 302(2), pages 688-699.
    14. Anıl Can & Gündüz Ulusoy, 2014. "Multi-project scheduling with two-stage decomposition," Annals of Operations Research, Springer, vol. 217(1), pages 95-116, June.
    15. Park, Jongyoon & Han, Jinil & Lee, Kyungsik, 2022. "Integer Optimization Model and Algorithm for the Stem Cell Culturing Problem," Omega, Elsevier, vol. 108(C).
    16. Van Eynde, Rob & Vanhoucke, Mario, 2022. "New summary measures and datasets for the multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 299(3), pages 853-868.
    17. Arda Turkgenci & Huseyin Guden & Mehmet Gülşen, 2021. "Decomposition based extended project scheduling for make-to-order production," Operational Research, Springer, vol. 21(2), pages 801-825, June.
    18. Xabier A. Martin & Rosa Herrero & Angel A. Juan & Javier Panadero, 2024. "An Agile Adaptive Biased-Randomized Discrete-Event Heuristic for the Resource-Constrained Project Scheduling Problem," Mathematics, MDPI, vol. 12(12), pages 1-21, June.
    19. Ramírez Palencia, Alberto E. & Mejía Delgadillo, Gonzalo E., 2012. "A computer application for a bus body assembly line using Genetic Algorithms," International Journal of Production Economics, Elsevier, vol. 140(1), pages 431-438.
    20. Hans, E.W. & Herroelen, W. & Leus, R. & Wullink, G., 2007. "A hierarchical approach to multi-project planning under uncertainty," Omega, Elsevier, vol. 35(5), pages 563-577, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:309:y:2023:i:3:p:958-976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.