IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v308y2023i1p54-75.html
   My bibliography  Save this article

Multi-project scheduling: A benchmark analysis of metaheuristic algorithms on various optimisation criteria and due dates

Author

Listed:
  • Bredael, Dries
  • Vanhoucke, Mario

Abstract

This paper reviews a set of ten existing metaheuristic solution procedures for the resource-constrained multi-project scheduling problem. Algorithmic implementations are constructed based on the description of the original procedures in literature. Equivalence is verified on the original test instances for the original objective and parameters through a comparison with the reported results. An extensive benchmark analysis is performed on a novel, publicly available dataset for a variety of optimisation criteria and due date settings for which the original algorithms have not been tested earlier. The impact of the different objectives, due dates and test instance parameters is analysed and an overall ranking of the metaheuristic solution methods for different situations is discussed. Key insights into the structure of competitive solutions for disparate objectives and due date settings are presented and effective algorithmic components are revealed.

Suggested Citation

  • Bredael, Dries & Vanhoucke, Mario, 2023. "Multi-project scheduling: A benchmark analysis of metaheuristic algorithms on various optimisation criteria and due dates," European Journal of Operational Research, Elsevier, vol. 308(1), pages 54-75.
  • Handle: RePEc:eee:ejores:v:308:y:2023:i:1:p:54-75
    DOI: 10.1016/j.ejor.2022.11.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722008670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.11.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giuseppe Confessore & Stefano Giordani & Silvia Rismondo, 2007. "A market-based multi-agent system model for decentralized multi-project scheduling," Annals of Operations Research, Springer, vol. 150(1), pages 115-135, March.
    2. Gonçalves, J.F. & Mendes, J.J.M. & Resende, M.G.C., 2008. "A genetic algorithm for the resource constrained multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1171-1190, September.
    3. John Dumond & Vincent A. Mabert, 1988. "Evaluating Project Scheduling and Due Date Assignment Procedures: An Experimental Analysis," Management Science, INFORMS, vol. 34(1), pages 101-118, January.
    4. Geiger, Martin Josef, 2017. "A multi-threaded local search algorithm and computer implementation for the multi-mode, resource-constrained multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 256(3), pages 729-741.
    5. Krüger, Doreen & Scholl, Armin, 2009. "A heuristic solution framework for the resource constrained (multi-)project scheduling problem with sequence-dependent transfer times," European Journal of Operational Research, Elsevier, vol. 197(2), pages 492-508, September.
    6. Hartmann, Sonke & Kolisch, Rainer, 2000. "Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 127(2), pages 394-407, December.
    7. Hartmann, Sönke & Kolisch, R., 2000. "Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 11180, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    8. Xiaoming Wang & Qingxin Chen & Ning Mao & Xindu Chen & Zhantao Li, 2015. "Proactive approach for stochastic RCMPSP based on multi-priority rule combinations," International Journal of Production Research, Taylor & Francis Journals, vol. 53(4), pages 1098-1110, February.
    9. Li, K. Y. & Willis, R. J., 1992. "An iterative scheduling technique for resource-constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 56(3), pages 370-379, February.
    10. Antonio Lova & Pilar Tormos, 2001. "Analysis of Scheduling Schemes and Heuristic Rules Performance in Resource-Constrained Multiproject Scheduling," Annals of Operations Research, Springer, vol. 102(1), pages 263-286, February.
    11. Browning, Tyson R. & Yassine, Ali A., 2010. "Resource-constrained multi-project scheduling: Priority rule performance revisited," International Journal of Production Economics, Elsevier, vol. 126(2), pages 212-228, August.
    12. M.L. Mittal & Arun Kanda, 2009. "Two-phase heuristics for scheduling of multiple projects," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 4(2), pages 159-177.
    13. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
    14. Lawrence, Stephen R. & Morton, Thomas E., 1993. "Resource-constrained multi-project scheduling with tardy costs: Comparing myopic, bottleneck, and resource pricing heuristics," European Journal of Operational Research, Elsevier, vol. 64(2), pages 168-187, January.
    15. Beşikci, Umut & Bilge, Ümit & Ulusoy, Gündüz, 2015. "Multi-mode resource constrained multi-project scheduling and resource portfolio problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 22-31.
    16. Yang, Kum-Khiong & Sum, Chee-Chuong, 1997. "An evaluation of due date, resource allocation, project release, and activity scheduling rules in a multiproject environment," European Journal of Operational Research, Elsevier, vol. 103(1), pages 139-154, November.
    17. Rob Eynde & Mario Vanhoucke, 2020. "Resource-constrained multi-project scheduling: benchmark datasets and decoupled scheduling," Journal of Scheduling, Springer, vol. 23(3), pages 301-325, June.
    18. I. Kurtulus & E. W. Davis, 1982. "Multi-Project Scheduling: Categorization of Heuristic Rules Performance," Management Science, INFORMS, vol. 28(2), pages 161-172, February.
    19. Vercellis, Carlo, 1994. "Constrained multi-project plannings problems: A Lagrangean decomposition approach," European Journal of Operational Research, Elsevier, vol. 78(2), pages 267-275, October.
    20. Anıl Can & Gündüz Ulusoy, 2014. "Multi-project scheduling with two-stage decomposition," Annals of Operations Research, Springer, vol. 217(1), pages 95-116, June.
    21. Lova, Antonio & Maroto, Concepcion & Tormos, Pilar, 2000. "A multicriteria heuristic method to improve resource allocation in multiproject scheduling," European Journal of Operational Research, Elsevier, vol. 127(2), pages 408-424, December.
    22. Deckro, Richard F. & Winkofsky, E. P. & E. Hebert, John & Gagnon, Roger, 1991. "A decomposition approach to multi-project scheduling," European Journal of Operational Research, Elsevier, vol. 51(1), pages 110-118, March.
    23. Adhau, Sunil & Mittal, M.L. & Mittal, Abhinav, 2013. "A multi-agent system for decentralized multi-project scheduling with resource transfers," International Journal of Production Economics, Elsevier, vol. 146(2), pages 646-661.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bredael, Dries & Vanhoucke, Mario, 2024. "A genetic algorithm with resource buffers for the resource-constrained multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 315(1), pages 19-34.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rob Eynde & Mario Vanhoucke, 2020. "Resource-constrained multi-project scheduling: benchmark datasets and decoupled scheduling," Journal of Scheduling, Springer, vol. 23(3), pages 301-325, June.
    2. Gómez Sánchez, Mariam & Lalla-Ruiz, Eduardo & Fernández Gil, Alejandro & Castro, Carlos & Voß, Stefan, 2023. "Resource-constrained multi-project scheduling problem: A survey," European Journal of Operational Research, Elsevier, vol. 309(3), pages 958-976.
    3. Browning, Tyson R. & Yassine, Ali A., 2010. "Resource-constrained multi-project scheduling: Priority rule performance revisited," International Journal of Production Economics, Elsevier, vol. 126(2), pages 212-228, August.
    4. Wuliang Peng & Jiali lin & Jingwen Zhang & Liangwei Chen, 2022. "A bi-objective hierarchical program scheduling problem and its solution based on NSGA-III," Annals of Operations Research, Springer, vol. 308(1), pages 389-414, January.
    5. Ben Issa, Samer & Patterson, Raymond A. & Tu, Yiliu, 2021. "Solving resource-constrained multi-project environment under different activity assumptions," International Journal of Production Economics, Elsevier, vol. 232(C).
    6. He, Yukang & Jia, Tao & Zheng, Weibo, 2023. "Tabu search for dedicated resource-constrained multiproject scheduling to minimise the maximal cash flow gap under uncertainty," European Journal of Operational Research, Elsevier, vol. 310(1), pages 34-52.
    7. He, Naihui & Zhang, David Z. & Yuce, Baris, 2022. "Integrated multi-project planning and scheduling - a multiagent approach," European Journal of Operational Research, Elsevier, vol. 302(2), pages 688-699.
    8. Anıl Can & Gündüz Ulusoy, 2014. "Multi-project scheduling with two-stage decomposition," Annals of Operations Research, Springer, vol. 217(1), pages 95-116, June.
    9. Krüger, Doreen & Scholl, Armin, 2009. "A heuristic solution framework for the resource constrained (multi-)project scheduling problem with sequence-dependent transfer times," European Journal of Operational Research, Elsevier, vol. 197(2), pages 492-508, September.
    10. Feifei Li & Zhe Xu, 2018. "A multi-agent system for distributed multi-project scheduling with two-stage decomposition," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-24, October.
    11. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    12. Hartmann, Sönke & Briskorn, Dirk, 2008. "A survey of variants and extensions of the resource-constrained project scheduling problem," Working Paper Series 02/2008, Hamburg School of Business Administration (HSBA).
    13. Gonçalves, J.F. & Mendes, J.J.M. & Resende, M.G.C., 2008. "A genetic algorithm for the resource constrained multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1171-1190, September.
    14. Esmaeil MEHDIZADEH & Hamidreza AKBARI, 2017. "A Novel Vibration Damping Optimization Algorithm for Resource Constrained Multi- Project Scheduling Problem," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(2), pages 291-309.
    15. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
    16. M. Suresh & Pankaj Dutta & Karuna Jain, 2015. "Resource Constrained Multi-Project Scheduling Problem with Resource Transfer Times," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(06), pages 1-30, December.
    17. Luise-Sophie Hoffmann & Carolin Kellenbrink & Stefan Helber, 2020. "Simultaneous structuring and scheduling of multiple projects with flexible project structures," Journal of Business Economics, Springer, vol. 90(5), pages 679-711, June.
    18. Ramírez Palencia, Alberto E. & Mejía Delgadillo, Gonzalo E., 2012. "A computer application for a bus body assembly line using Genetic Algorithms," International Journal of Production Economics, Elsevier, vol. 140(1), pages 431-438.
    19. Hans, E.W. & Herroelen, W. & Leus, R. & Wullink, G., 2007. "A hierarchical approach to multi-project planning under uncertainty," Omega, Elsevier, vol. 35(5), pages 563-577, October.
    20. Van Eynde, Rob & Vanhoucke, Mario, 2022. "New summary measures and datasets for the multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 299(3), pages 853-868.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:308:y:2023:i:1:p:54-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.