IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v60y2022i4p1411-1423.html
   My bibliography  Save this article

Performance evaluation of scheduling policies for the dynamic and stochastic resource-constrained multi-project scheduling problem

Author

Listed:
  • Ugur Satic
  • Peter Jacko
  • Christopher Kirkbride

Abstract

In this study, we consider the dynamic and stochastic resource-constrained multi-project scheduling problem where projects generate rewards at their completion, completions later than a due date cause tardiness costs, task duration is uncertain, and new projects arrive randomly during the ongoing project execution both of which disturb the existing project scheduling plan. We model this problem as a discrete-time Markov decision process and explore the performance and computational limitations of solving the problem by dynamic programming. We run and compare five different solution approaches, which are: a dynamic programming algorithm to determine a policy that maximises the time-average profit, a genetic algorithm and an optimal reactive baseline algorithm, both generate a schedule to maximise the total profit of ongoing projects, a rule-based algorithm which prioritises processing of tasks with the highest processing durations, and a worst decision algorithm to seek a non-idling policy that minimises the time-average profit. The performance of the optimal reactive baseline algorithm is the closest to the optimal policies of the dynamic programming algorithm, but its results are suboptimal, up to 37.6%. Alternative scheduling algorithms are close to optimal with low project arrival probability but quickly deteriorate their performance as the probability increases.

Suggested Citation

  • Ugur Satic & Peter Jacko & Christopher Kirkbride, 2022. "Performance evaluation of scheduling policies for the dynamic and stochastic resource-constrained multi-project scheduling problem," International Journal of Production Research, Taylor & Francis Journals, vol. 60(4), pages 1411-1423, February.
  • Handle: RePEc:taf:tprsxx:v:60:y:2022:i:4:p:1411-1423
    DOI: 10.1080/00207543.2020.1857450
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2020.1857450
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2020.1857450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gómez Sánchez, Mariam & Lalla-Ruiz, Eduardo & Fernández Gil, Alejandro & Castro, Carlos & Voß, Stefan, 2023. "Resource-constrained multi-project scheduling problem: A survey," European Journal of Operational Research, Elsevier, vol. 309(3), pages 958-976.
    2. Satic, U. & Jacko, P. & Kirkbride, C., 2024. "A simulation-based approximate dynamic programming approach to dynamic and stochastic resource-constrained multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 315(2), pages 454-469.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:60:y:2022:i:4:p:1411-1423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.