IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v303y2022i2p945-957.html
   My bibliography  Save this article

A competitive search game with a moving target

Author

Listed:
  • Duvocelle, Benoit
  • Flesch, János
  • Staudigl, Mathias
  • Vermeulen, Dries

Abstract

We introduce a discrete-time search game, in which two players compete to find an invisible object first. The object moves according to a time-varying Markov chain on finitely many states. The players are active in turns. At each period, the active player chooses a state. If the object is there then he finds the object and wins. Otherwise the object moves and the game enters the next period. We show that this game admits a value, and for any error-term ε>0, each player has a pure (subgame-perfect) ε-optimal strategy. Interestingly, a 0-optimal strategy does not always exist. We derive results on the analytic and structural properties of the value and the ε-optimal strategies. We devote special attention to the important time-homogeneous case, where we show that (subgame-perfect) optimal strategies exist if the Markov chain is irreducible and aperiodic.

Suggested Citation

  • Duvocelle, Benoit & Flesch, János & Staudigl, Mathias & Vermeulen, Dries, 2022. "A competitive search game with a moving target," European Journal of Operational Research, Elsevier, vol. 303(2), pages 945-957.
  • Handle: RePEc:eee:ejores:v:303:y:2022:i:2:p:945-957
    DOI: 10.1016/j.ejor.2022.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722001801
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Benoit Duvocelle & János Flesch & Hui Min Shi & Dries Vermeulen, 2021. "Search for a moving target in a competitive environment," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(2), pages 547-557, June.
    2. Duvocelle, Benoit & Flesch, János & Staudigl, Mathias & Vermeulen, Dries, 2022. "A competitive search game with a moving target," European Journal of Operational Research, Elsevier, vol. 303(2), pages 945-957.
    3. Drew Fudenberg & David Levine, 2008. "Subgame–Perfect Equilibria of Finite– and Infinite–Horizon Games," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 1, pages 3-20, World Scientific Publishing Co. Pte. Ltd..
    4. Mandel, Antoine & Venel, Xavier, 2020. "Dynamic competition over social networks," European Journal of Operational Research, Elsevier, vol. 280(2), pages 597-608.
    5. Paul J. Schweitzer, 1971. "Technical Note—Threshold Probabilities when Searching for a Moving Target," Operations Research, INFORMS, vol. 19(3), pages 707-709, June.
    6. Zoroa, N. & Fernández-Sáez, M.J. & Zoroa, P., 2011. "A foraging problem: Sit-and-wait versus active predation," European Journal of Operational Research, Elsevier, vol. 208(2), pages 131-141, January.
    7. Cao, Buyang, 1995. "Search-hide games on trees," European Journal of Operational Research, Elsevier, vol. 80(1), pages 175-183, January.
    8. Kensaku Kikuta, 2004. "A search game on a cyclic graph," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(7), pages 977-993, October.
    9. Steve Alpern & Vic Baston & Shmuel Gal, 2008. "Network search games with immobile hider, without a designated searcher starting point," International Journal of Game Theory, Springer;Game Theory Society, vol. 37(2), pages 281-302, June.
    10. Garrec, Tristan & Scarsini, Marco, 2020. "Search for an immobile hider on a stochastic network," European Journal of Operational Research, Elsevier, vol. 283(2), pages 783-794.
    11. Lidbetter, Thomas, 2020. "Search and rescue in the face of uncertain threats," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1153-1160.
    12. J.C. Gittins & D.M. Roberts, 1979. "The search for an intelligent evader concealed in one of an arbitrary number of regions," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 26(4), pages 651-666, December.
    13. Angelopoulos, Spyros & Lidbetter, Thomas, 2020. "Competitive search in a network," European Journal of Operational Research, Elsevier, vol. 286(2), pages 781-790.
    14. Stephen M. Pollock, 1970. "A Simple Model of Search for a Moving Target," Operations Research, INFORMS, vol. 18(5), pages 883-903, October.
    15. D. M. Roberts & J. C. Gittins, 1978. "The search for an intelligent evader: Strategies for searcher and evader in the two‐region problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 25(1), pages 95-106, March.
    16. James M. Dobbie, 1974. "A Two-Cell Model of Search for a Moving Target," Operations Research, INFORMS, vol. 22(1), pages 79-92, February.
    17. János Flesch & Jeroen Kuipers & Ayala Mashiah-Yaakovi & Gijs Schoenmakers & Eilon Solan & Koos Vrieze, 2010. "Perfect-Information Games with Lower-Semicontinuous Payoffs," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 742-755, November.
    18. Hohzaki, Ryusuke & Iida, Koji, 2001. "Optimal ambushing search for a moving target," European Journal of Operational Research, Elsevier, vol. 133(1), pages 120-129, August.
    19. János Flesch & Arkadi Predtetchinski, 2016. "Subgame-perfect $$\epsilon $$ ϵ -equilibria in perfect information games with sigma-discrete discontinuities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 479-495, March.
    20. Lawrence D. Stone & Johannes O. Royset & Alan R. Washburn, 2016. "Optimal Search for Moving Targets," International Series in Operations Research and Management Science, Springer, number 978-3-319-26899-6, April.
    21. János Flesch & Emin Karagözoǧlu & Andrés Perea, 2009. "Optimal search for a moving target with the option to wait," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(6), pages 526-539, September.
    22. Stanley J. Benkoski & Michael G. Monticino & James R. Weisinger, 1991. "A survey of the search theory literature," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(4), pages 469-494, August.
    23. Scott Shorey Brown, 1980. "Optimal Search for a Moving Target in Discrete Time and Space," Operations Research, INFORMS, vol. 28(6), pages 1275-1289, December.
    24. Reijnierse, J H & Potters, J A M, 1993. "Search Games with Immobile Hider," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(4), pages 385-394.
    25. János Flesch & P. Jean-Jacques Herings & Jasmine Maes & Arkadi Predtetchinski, 2021. "Subgame Maxmin Strategies in Zero-Sum Stochastic Games with Tolerance Levels," Dynamic Games and Applications, Springer, vol. 11(4), pages 704-737, December.
    26. Jotshi, Arun & Batta, Rajan, 2008. "Search for an immobile entity on a network," European Journal of Operational Research, Elsevier, vol. 191(2), pages 347-359, December.
    27. Ljiljana Pavlović, 1995. "A search game on the union of graphs with immobile hider," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(8), pages 1177-1189, December.
    28. János Flesch & Arkadi Predtetchinski, 2016. "Subgame-Perfect ϵ-Equilibria in Perfect Information Games with Common Preferences at the Limit," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1208-1221, November.
    29. Ayala Mashiah-Yaakovi, 2015. "Correlated Equilibria in Stochastic Games with Borel Measurable Payoffs," Dynamic Games and Applications, Springer, vol. 5(1), pages 120-135, March.
    30. Alan R. Washburn, 1983. "Search for a Moving Target: The FAB Algorithm," Operations Research, INFORMS, vol. 31(4), pages 739-751, August.
    31. Y. C. Kan, 1974. "Technical Note—A Counterexample for an Optimal Search-and-Stop Model," Operations Research, INFORMS, vol. 22(4), pages 889-892, August.
    32. Harris, Christopher J, 1985. "Existence and Characterization of Perfect Equilibrium in Games of Perfect Information," Econometrica, Econometric Society, vol. 53(3), pages 613-628, May.
    33. Donald A. Berry & Roy F. Mensch, 1986. "Discrete Search with Directional Information," Operations Research, INFORMS, vol. 34(3), pages 470-477, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steve Alpern & Li Zeng, 2022. "Social Distancing, Gathering, Search Games: Mobile Agents on Simple Networks," Dynamic Games and Applications, Springer, vol. 12(1), pages 288-311, March.
    2. Benoit Duvocelle & János Flesch & Hui Min Shi & Dries Vermeulen, 2021. "Search for a moving target in a competitive environment," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(2), pages 547-557, June.
    3. Duvocelle, Benoit & Flesch, János & Staudigl, Mathias & Vermeulen, Dries, 2022. "A competitive search game with a moving target," European Journal of Operational Research, Elsevier, vol. 303(2), pages 945-957.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garrec, Tristan & Scarsini, Marco, 2020. "Search for an immobile hider on a stochastic network," European Journal of Operational Research, Elsevier, vol. 283(2), pages 783-794.
    2. Benoit Duvocelle & János Flesch & Hui Min Shi & Dries Vermeulen, 2021. "Search for a moving target in a competitive environment," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(2), pages 547-557, June.
    3. Steve Alpern & Thomas Lidbetter, 2014. "Searching a Variable Speed Network," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 697-711, August.
    4. Flesch, Janos & Herings, P. Jean-Jacques & Maes, Jasmine & Predtetchinski, Arkadi, 2019. "Individual upper semicontinuity and subgame perfect ϵ-equilibria in games with almost perfect information," Research Memorandum 002, Maastricht University, Graduate School of Business and Economics (GSBE).
    5. Steve Alpern, 2011. "Find-and-Fetch Search on a Tree," Operations Research, INFORMS, vol. 59(5), pages 1258-1268, October.
    6. János Flesch & Arkadi Predtetchinski, 2016. "Subgame-Perfect ϵ-Equilibria in Perfect Information Games with Common Preferences at the Limit," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1208-1221, November.
    7. Carlos Alós-Ferrer & Klaus Ritzberger, 2017. "Characterizing existence of equilibrium for large extensive form games: a necessity result," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(2), pages 407-430, February.
    8. Yolmeh, Abdolmajid & Baykal-Gürsoy, Melike, 2021. "Weighted network search games with multiple hidden objects and multiple search teams," European Journal of Operational Research, Elsevier, vol. 289(1), pages 338-349.
    9. Frédéric Dambreville & Jean‐Pierre Le Cadre, 2002. "Detection of a Markovian target with optimization of the search efforts under generalized linear constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(2), pages 117-142, March.
    10. He, Wei & Sun, Yeneng, 2020. "Dynamic games with (almost) perfect information," Theoretical Economics, Econometric Society, vol. 15(2), May.
    11. Jeroen Kuipers & János Flesch & Gijs Schoenmakers & Koos Vrieze, 2021. "Subgame perfection in recursive perfect information games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 603-662, March.
    12. János Flesch & P. Jean-Jacques Herings & Jasmine Maes & Arkadi Predtetchinski, 2021. "Subgame Maxmin Strategies in Zero-Sum Stochastic Games with Tolerance Levels," Dynamic Games and Applications, Springer, vol. 11(4), pages 704-737, December.
    13. Stanley J. Benkoski & Michael G. Monticino & James R. Weisinger, 1991. "A survey of the search theory literature," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(4), pages 469-494, August.
    14. Lyn C. Thomas & James N. Eagle, 1995. "Criteria and approximate methods for path‐constrained moving‐target search problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(1), pages 27-38, February.
    15. Delavernhe, Florian & Jaillet, Patrick & Rossi, André & Sevaux, Marc, 2021. "Planning a multi-sensors search for a moving target considering traveling costs," European Journal of Operational Research, Elsevier, vol. 292(2), pages 469-482.
    16. János Flesch & P. Jean-Jacques Herings & Jasmine Maes & Arkadi Predtetchinski, 2022. "Individual upper semicontinuity and subgame perfect $$\epsilon $$ ϵ -equilibria in games with almost perfect information," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(2), pages 695-719, April.
    17. Frédéric Dambreville & Jean‐Pierre Le Cadre, 2007. "Constrained minimax optimization of continuous search efforts for the detection of a stationary target," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(6), pages 589-601, September.
    18. Alós-Ferrer, Carlos & Ritzberger, Klaus, 2016. "Equilibrium existence for large perfect information games," Journal of Mathematical Economics, Elsevier, vol. 62(C), pages 5-18.
    19. Alós-Ferrer, Carlos & Ritzberger, Klaus, 2017. "Does backwards induction imply subgame perfection?," Games and Economic Behavior, Elsevier, vol. 103(C), pages 19-29.
    20. Francesco Caruso & Maria Carmela Ceparano & Jacqueline Morgan, 2024. "Asymptotic behavior of subgame perfect Nash equilibria in Stackelberg games," Annals of Operations Research, Springer, vol. 336(3), pages 1573-1590, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:303:y:2022:i:2:p:945-957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.