IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v12y2022i1d10.1007_s13235-022-00427-1.html
   My bibliography  Save this article

Social Distancing, Gathering, Search Games: Mobile Agents on Simple Networks

Author

Listed:
  • Steve Alpern

    (University of Warwick)

  • Li Zeng

    (University of Warwick)

Abstract

During epidemics, the population is asked to socially distance, with pairs of individuals keeping two meters apart. We model this as a new optimization problem by considering a team of agents placed on the nodes of a network. Their common aim is to achieve pairwise graph distances of at least D, a state we call socially distanced. (If $$D=1,$$ D = 1 , they want to be at distinct nodes; if $$D=2$$ D = 2 they want to be non-adjacent.) We allow only a simple type of motion called a lazy random walk: with probability p (called the laziness parameter), they remain at their current node next period; with complementary probability $$1-p$$ 1 - p , they move to a random adjacent node. The team seeks the common value of p which achieves social distance in the least expected time, which is the absorption time of a Markov chain. We observe that the same Markov chain, with different goals (absorbing states), models the gathering, or multi-rendezvous problem (all agents at the same node). Allowing distinct laziness for two types of agents (searchers and hider) extends the existing literature on predator–prey search games to multiple searchers. We consider only special networks: line, cycle and grid.

Suggested Citation

  • Steve Alpern & Li Zeng, 2022. "Social Distancing, Gathering, Search Games: Mobile Agents on Simple Networks," Dynamic Games and Applications, Springer, vol. 12(1), pages 288-311, March.
  • Handle: RePEc:spr:dyngam:v:12:y:2022:i:1:d:10.1007_s13235-022-00427-1
    DOI: 10.1007/s13235-022-00427-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13235-022-00427-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13235-022-00427-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blume, Andreas & Franco, April Mitchell, 2007. "Decentralized learning from failure," Journal of Economic Theory, Elsevier, vol. 133(1), pages 504-523, March.
    2. Steve Alpern, 2002. "Rendezvous search on labeled networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(3), pages 256-274, April.
    3. Shmuel Gal, 1999. "Rendezvous Search on the Line," Operations Research, INFORMS, vol. 47(6), pages 974-976, December.
    4. J. V. Howard, 1999. "Rendezvous Search on the Interval and the Circle," Operations Research, INFORMS, vol. 47(4), pages 550-558, August.
    5. Duvocelle, Benoit & Flesch, János & Staudigl, Mathias & Vermeulen, Dries, 2022. "A competitive search game with a moving target," European Journal of Operational Research, Elsevier, vol. 303(2), pages 945-957.
    6. Steve Alpern & Diane Reyniers, 2002. "Spatial Dispersion as a Dynamic Coordination Problem," Theory and Decision, Springer, vol. 53(1), pages 29-59, August.
    7. Richard Weber, 2012. "Optimal Symmetric Rendezvous Search on Three Locations," Mathematics of Operations Research, INFORMS, vol. 37(1), pages 111-122, February.
    8. Farboodi, Maryam & Jarosch, Gregor & Shimer, Robert, 2021. "Internal and external effects of social distancing in a pandemic," Journal of Economic Theory, Elsevier, vol. 196(C).
    9. Steve Alpern, 2002. "Rendezvous Search: A Personal Perspective," Operations Research, INFORMS, vol. 50(5), pages 772-795, October.
    10. Michael Greenstone & Vishan Nigam, 2020. "Does Social Distancing Matter?," Working Papers 2020-26, Becker Friedman Institute for Research In Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leone, Pierre & Buwaya, Julia & Alpern, Steve, 2022. "Search-and-rescue rendezvous," European Journal of Operational Research, Elsevier, vol. 297(2), pages 579-591.
    2. Pierre Leone & Steve Alpern, 2018. "Rendezvous search with markers that can be dropped at chosen times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(6-7), pages 449-461, September.
    3. Cheng-Shang Chang & Wanjiun Liao & Ching-Min Lien, 2015. "On the Multichannel Rendezvous Problem: Fundamental Limits, Optimal Hopping Sequences, and Bounded Time-to-Rendezvous," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 1-23, February.
    4. Alpern, Steve, 2008. "Line-of-sight rendezvous," European Journal of Operational Research, Elsevier, vol. 188(3), pages 865-883, August.
    5. Alpern, Steve & Baston, Vic, 2006. "A common notion of clockwise can help in planar rendezvous," European Journal of Operational Research, Elsevier, vol. 175(2), pages 688-706, December.
    6. Steve Alpern & Thomas Lidbetter, 2015. "Optimal Trade-Off Between Speed and Acuity When Searching for a Small Object," Operations Research, INFORMS, vol. 63(1), pages 122-133, February.
    7. Pierre Leone & Steve Alpern, 2022. "A Symbolic Programming Approach to the Rendezvous Search Problem," SN Operations Research Forum, Springer, vol. 3(1), pages 1-29, March.
    8. Alpern, Steve & Katrantzi, Ioanna, 2009. "Equilibria of two-sided matching games with common preferences," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1214-1222, August.
    9. Steve Alpern, 2017. "Hide-and-Seek Games on a Network, Using Combinatorial Search Paths," Operations Research, INFORMS, vol. 65(5), pages 1207-1214, October.
    10. Steve Alpern, 2002. "Rendezvous Search: A Personal Perspective," Operations Research, INFORMS, vol. 50(5), pages 772-795, October.
    11. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.
    12. J. V. Howard & Marco Timmer, 2013. "New results on rendezvous search on the interval," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(6), pages 454-467, September.
    13. Dirk Niepelt & Mart n Gonzalez-Eiras, 2020. "Optimally Controlling an Epidemic," Diskussionsschriften dp2019, Universitaet Bern, Departement Volkswirtschaft.
    14. Andreas Blume & April Mitchell Franco & Paul Heidhues, 2021. "Dynamic coordination via organizational routines," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 72(4), pages 1001-1047, November.
    15. Abel Brodeur & David Gray & Anik Islam & Suraiya Bhuiyan, 2021. "A literature review of the economics of COVID‐19," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1007-1044, September.
    16. Alexandre Gori Maia & Leticia Marteleto & Cristina Guimarães Rodrigues & Luiz Gustavo Sereno, 2021. "The short-term impacts of coronavirus quarantine in São Paulo: The health-economy trade-offs," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-18, February.
    17. Jesper Akesson & Sam Ashworth-Hayes & Robert Hahn & Robert Metcalfe & Itzhak Rasooly, 2022. "Fatalism, beliefs, and behaviors during the COVID-19 pandemic," Journal of Risk and Uncertainty, Springer, vol. 64(2), pages 147-190, April.
    18. Dirk Krueger & Harald Uhlig & Taojun Xie, 2020. "Macroeconomic Dynamics and Reallocation in an Epidemic," PIER Working Paper Archive 20-015, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    19. Thomas Hellmann & Veikko Thiele, 2022. "A theory of voluntary testing and self‐isolation in an ongoing pandemic," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 24(5), pages 873-911, October.
    20. Timo Boppart & Karl Harmenberg & John Hassler & Per Krusell & Jonna Olsson, 2020. "Integrated Epi-Econ Assessment," NBER Working Papers 28282, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:12:y:2022:i:1:d:10.1007_s13235-022-00427-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.