IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v49y2002i2p117-142.html
   My bibliography  Save this article

Detection of a Markovian target with optimization of the search efforts under generalized linear constraints

Author

Listed:
  • Frédéric Dambreville
  • Jean‐Pierre Le Cadre

Abstract

This paper deals with search for a target following a Markovian movement or a conditionally deterministic motion. The problem is to allocate the search efforts, when search resources renew with generalized linear constraints. The model obtained is extended to resource mixing management. New optimality equations of de Guenin's style are obtained. Practically, the problem is solved by using an algorithm derived from the FAB method. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 117–142, 2002; DOI 10.1002/nav.10009

Suggested Citation

  • Frédéric Dambreville & Jean‐Pierre Le Cadre, 2002. "Detection of a Markovian target with optimization of the search efforts under generalized linear constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(2), pages 117-142, March.
  • Handle: RePEc:wly:navres:v:49:y:2002:i:2:p:117-142
    DOI: 10.1002/nav.10009
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.10009
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.10009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Walter R. Stromquist & Lawrence D. Stone, 1981. "Constrained Optimization of Functionals with Search Theory Applications," Mathematics of Operations Research, INFORMS, vol. 6(4), pages 518-529, November.
    2. Jacques de Guenin, 1961. "Optimum Distribution of Effort: An Extension of the Koopman Basic Theory," Operations Research, INFORMS, vol. 9(1), pages 1-7, February.
    3. Stanley J. Benkoski & Michael G. Monticino & James R. Weisinger, 1991. "A survey of the search theory literature," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(4), pages 469-494, August.
    4. Scott Shorey Brown, 1980. "Optimal Search for a Moving Target in Discrete Time and Space," Operations Research, INFORMS, vol. 28(6), pages 1275-1289, December.
    5. Alan R. Washburn, 1983. "Search for a Moving Target: The FAB Algorithm," Operations Research, INFORMS, vol. 31(4), pages 739-751, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frédéric Dambreville & Jean‐Pierre Le Cadre, 2007. "Constrained minimax optimization of continuous search efforts for the detection of a stationary target," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(6), pages 589-601, September.
    2. Hohzaki, Ryusuke & Iida, Koji, 2001. "Optimal ambushing search for a moving target," European Journal of Operational Research, Elsevier, vol. 133(1), pages 120-129, August.
    3. Lawrence D. Stone & Alan R. Washburn, 1991. "Introduction special issue on search theory," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(4), pages 465-468, August.
    4. Delavernhe, Florian & Jaillet, Patrick & Rossi, André & Sevaux, Marc, 2021. "Planning a multi-sensors search for a moving target considering traveling costs," European Journal of Operational Research, Elsevier, vol. 292(2), pages 469-482.
    5. Duvocelle, Benoit & Flesch, János & Staudigl, Mathias & Vermeulen, Dries, 2022. "A competitive search game with a moving target," European Journal of Operational Research, Elsevier, vol. 303(2), pages 945-957.
    6. Joseph B. Kadane, 2015. "Optimal discrete search with technological choice," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 81(3), pages 317-336, June.
    7. Hohzaki, Ryusuke, 2006. "Search allocation game," European Journal of Operational Research, Elsevier, vol. 172(1), pages 101-119, July.
    8. Alan R. Washburn, 1998. "Branch and bound methods for a search problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(3), pages 243-257, April.
    9. Stanley J. Benkoski & Michael G. Monticino & James R. Weisinger, 1991. "A survey of the search theory literature," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(4), pages 469-494, August.
    10. Lyn C. Thomas & James N. Eagle, 1995. "Criteria and approximate methods for path‐constrained moving‐target search problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(1), pages 27-38, February.
    11. Johannes O. Royset & Hiroyuki Sato, 2010. "Route optimization for multiple searchers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(8), pages 701-717, December.
    12. Hohzaki, Ryusuke & Iida, Koji, 1997. "Optimal strategy of route and look for the path constrained search problem with reward criterion," European Journal of Operational Research, Elsevier, vol. 100(1), pages 236-249, July.
    13. Steven M. Shechter & Farhad Ghassemi & Yasin Gocgun & Martin L. Puterman, 2015. "Technical Note—Trading Off Quick versus Slow Actions in Optimal Search," Operations Research, INFORMS, vol. 63(2), pages 353-362, April.
    14. Joseph Kadane, 2015. "Optimal discrete search with technological choice," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 81(3), pages 317-336, June.
    15. J F J Vermeulen & M van den Brink, 2005. "The search for an alerted moving target," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 514-525, May.
    16. T. C. E. Cheng & B. Kriheli & E. Levner & C. T. Ng, 2021. "Scheduling an autonomous robot searching for hidden targets," Annals of Operations Research, Springer, vol. 298(1), pages 95-109, March.
    17. Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
    18. Reiter, Johannes & Mauch, Franz & Jäckle, Josef, 1992. "Blocking transitions in lattice spin models with directed kinetic constraints," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 184(3), pages 493-498.
    19. Hoam Chung & Elijah Polak & Johannes O. Royset & Shankar Sastry, 2011. "On the optimal detection of an underwater intruder in a channel using unmanned underwater vehicles," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(8), pages 804-820, December.
    20. Calvin Kielas-Jensen & Venanzio Cichella & David Casbeer & Satyanarayana Gupta Manyam & Isaac Weintraub, 2021. "Persistent Monitoring by Multiple Unmanned Aerial Vehicles Using Bernstein Polynomials," Journal of Optimization Theory and Applications, Springer, vol. 191(2), pages 899-916, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:49:y:2002:i:2:p:117-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.