IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v298y2022i1p276-292.html
   My bibliography  Save this article

Using data envelopment analysis in markovian decision making

Author

Listed:
  • Georgiou, Andreas C.
  • Thanassoulis, Emmanuel
  • Papadopoulou, Alexandra

Abstract

This paper introduces a modelling framework which combines Data Envelopment Analysis and Markov Chains into an integrated decision aid. Markov Chains are typically used in contexts where a system (e.g. staff profile in a large organisation) is at the start of the planning horizon in a given state, and the aim is to transform the system to a new state by the end of the horizon. The planning horizon can involve several steps and the system transits to a new state after each step. The transition probabilities from one step to the next are influenced by both organisational and external (non-organisational) factors. We develop our generic methodology using as a vehicle the homogeneous Markov manpower planning system. The paper recognizes a gap in existing Markovian manpower planning methods to handle stochasticity and optimization in a more tractable manner and puts forward an approach to harness the power of DEA to fill this gap. In this context, the Decision Maker (DM) can specify potential anticipated future outcomes (e.g. personnel flows) and then use DEA to identify additional feasible courses of action through convexity. These feasible strategies can be evaluated according to the DM's judgement over potential future states of nature and then employed to guide the organisation in making interventions that would affect transition probabilities to improve the probability of attaining the ultimate state desired for the system. The paper includes a numerical illustration of the suggested approach, including data from a manpower planning model previously addressed using classical Markov modelling.

Suggested Citation

  • Georgiou, Andreas C. & Thanassoulis, Emmanuel & Papadopoulou, Alexandra, 2022. "Using data envelopment analysis in markovian decision making," European Journal of Operational Research, Elsevier, vol. 298(1), pages 276-292.
  • Handle: RePEc:eee:ejores:v:298:y:2022:i:1:p:276-292
    DOI: 10.1016/j.ejor.2021.06.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172100566X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.06.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jose Bartelt-Hofer & Lilia Ben-Debba & Steffen Flessa, 2020. "Systematic Review of Economic Evaluations in Primary Open-Angle Glaucoma: Decision Analytic Modeling Insights," PharmacoEconomics - Open, Springer, vol. 4(1), pages 5-12, March.
    2. P.-C. G. Vassiliou & A. C. Georgiou, 1990. "Asymptotically Attainable Structures in Nonhomogeneous Markov Systems," Operations Research, INFORMS, vol. 38(3), pages 537-545, June.
    3. David S. P. Hopkins, 1980. "Models for Affirmative Action Planning and Evaluation," Management Science, INFORMS, vol. 26(10), pages 994-1006, October.
    4. Portela, Maria Conceição A. Silva & Thanassoulis, Emmanuel, 2014. "Economic efficiency when prices are not fixed: disentangling quantity and price efficiency," Omega, Elsevier, vol. 47(C), pages 36-44.
    5. Emrouznejad, Ali & Yang, Guo-liang, 2018. "A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 4-8.
    6. Lovell, C. A. Knox & Pastor, Jesus T., 1999. "Radial DEA models without inputs or without outputs," European Journal of Operational Research, Elsevier, vol. 118(1), pages 46-51, October.
    7. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    8. Mylene Lagarde & John Cairns, 2012. "Modelling human resources policies with Markov models: an illustration with the South African nursing labour market," Health Care Management Science, Springer, vol. 15(3), pages 270-282, September.
    9. Guerry, Marie-Anne, 2011. "Hidden heterogeneity in manpower systems: A Markov-switching model approach," European Journal of Operational Research, Elsevier, vol. 210(1), pages 106-113, April.
    10. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    11. Saul I. Gass & Roger W. Collins & Craig W. Meinhardt & Douglas M. Lemon & Marcia D. Gillette, 1988. "OR Practice—The Army Manpower Long-Range Planning System," Operations Research, INFORMS, vol. 36(1), pages 5-17, February.
    12. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    13. Kenneth R. Smith & A. Mead Over & Marc F. Hansen & Frederick L. Golladay & Esther J. Davenport, 1976. "Analytic Framework and Measurement Strategy for Investigating Optimal Staffing in Medical Practice," Operations Research, INFORMS, vol. 24(5), pages 815-841, October.
    14. Chiang Kao, 2014. "Efficiency Decomposition in Network Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 55-77, Springer.
    15. Vandan Trivedi & Ira Moscovice & Richard Bass & John Brooks, 1987. "A Semi-Markov Model for Primary Health Care Manpower Supply Prediction," Management Science, INFORMS, vol. 33(2), pages 149-160, February.
    16. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    17. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    18. Mark Zais & Dan Zhang, 2016. "A Markov chain model of military personnel dynamics," International Journal of Production Research, Taylor & Francis Journals, vol. 54(6), pages 1863-1885, March.
    19. Rogge, Nicky & De Jaeger, Simon & Lavigne, Carolien, 2017. "Waste Performance of NUTS 2-regions in the EU: A Conditional Directional Distance Benefit-of-the-Doubt Model," Ecological Economics, Elsevier, vol. 139(C), pages 19-32.
    20. W. Cooper & L. Seiford & K. Tone & J. Zhu, 2007. "Some models and measures for evaluating performances with DEA: past accomplishments and future prospects," Journal of Productivity Analysis, Springer, vol. 28(3), pages 151-163, December.
    21. Kannan Nilakantan, 2015. "Evaluation of staffing policies in Markov manpower systems and their extension to organizations with outsource personnel," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(8), pages 1324-1340, August.
    22. Karagiannis, Roxani & Karagiannis, Giannis, 2018. "Intra- and inter-group composite indicators using the BoD model," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 44-51.
    23. V. A. Dimitriou & A. C. Georgiou, 2021. "Introduction, analysis and asymptotic behavior of a multi-level manpower planning model in a continuous time setting under potential department contraction," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(5), pages 1173-1199, March.
    24. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    25. McClean, Sally, 1991. "Manpower planning models and their estimation," European Journal of Operational Research, Elsevier, vol. 51(2), pages 179-187, March.
    26. A. C. Georgiou & N. Tsantas, 2002. "Modelling recruitment training in mathematical human resource planning," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 18(1), pages 53-74, January.
    27. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgios Tsaples & Jason Papathanasiou & Andreas C. Georgiou, 2022. "An Exploratory DEA and Machine Learning Framework for the Evaluation and Analysis of Sustainability Composite Indicators in the EU," Mathematics, MDPI, vol. 10(13), pages 1-27, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sinuany-Stern, Zilla, 2023. "Foundations of operations research: From linear programming to data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1069-1080.
    2. Kao, Chiang, 2022. "A maximum slacks-based measure of efficiency for closed series production systems," Omega, Elsevier, vol. 106(C).
    3. Svetlana V. Ratner & Artem M. Shaposhnikov & Andrey V. Lychev, 2023. "Network DEA and Its Applications (2017–2022): A Systematic Literature Review," Mathematics, MDPI, vol. 11(9), pages 1-24, May.
    4. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    5. Nakaishi, Tomoaki & Takayabu, Hirotaka & Eguchi, Shogo, 2021. "Environmental efficiency analysis of China's coal-fired power plants considering heterogeneity in power generation company groups," Energy Economics, Elsevier, vol. 102(C).
    6. Kao, Chiang & Liu, Shiang-Tai, 2022. "Group decision making in data envelopment analysis: A robot selection application," European Journal of Operational Research, Elsevier, vol. 297(2), pages 592-599.
    7. Camanho, Ana Santos & Silva, Maria Conceicao & Piran, Fabio Sartori & Lacerda, Daniel Pacheco, 2024. "A literature review of economic efficiency assessments using Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 315(1), pages 1-18.
    8. Koronakos, Gregory & Sotiros, Dimitris & Despotis, Dimitris K. & Kritikos, Manolis N., 2022. "Fair efficiency decomposition in network DEA: A compromise programming approach," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    9. Ibrahim Alnafrah, 2021. "Efficiency evaluation of BRICS’s national innovation systems based on bias-corrected network data envelopment analysis," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-28, December.
    10. Kao, Chiang, 2022. "Closest targets in the slacks-based measure of efficiency for production units with multi-period data," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1042-1054.
    11. Gerami, Javad & Mozaffari, Mohammad Reza & Wanke, Peter F. & Correa, Henrique L., 2022. "Improving information reliability of non-radial value efficiency analysis: An additive slacks based measure approach," European Journal of Operational Research, Elsevier, vol. 298(3), pages 967-978.
    12. Kao, Chiang, 2020. "Decomposition of slacks-based efficiency measures in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 283(2), pages 588-600.
    13. See, Kok Fong & Md Hamzah, Nurhafiza & Yu, Ming-Miin, 2021. "Metafrontier efficiency analysis for hospital pharmacy services using dynamic network DEA framework," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    14. José Solana‐Ibáñez & Manuel Caravaca‐Garratón & Ricardo Teruel‐Sánchez, 2020. "Stakeholder perception on corporate reputation and management efficiency: Evidence from the Spanish Defence sector," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 27(5), pages 2381-2399, September.
    15. Huaqing Wu & Jingyu Yang & Wensheng Wu & Ya Chen, 2023. "Interest rate liberalization and bank efficiency: A DEA analysis of Chinese commercial banks," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 467-498, June.
    16. Mergoni, Anna & Soncin, Mara & Agasisti, Tommaso, 2023. "The effect of ICT on schools’ efficiency: Empirical evidence on 23 European countries," Omega, Elsevier, vol. 119(C).
    17. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    18. Mirdehghan, S. Morteza & Fukuyama, Hirofumi, 2016. "Pareto–Koopmans efficiency and network DEA," Omega, Elsevier, vol. 61(C), pages 78-88.
    19. Mehdiloo, Mahmood & Podinovski, Victor V., 2021. "Strong, weak and Farrell efficient frontiers of technologies satisfying different production assumptions," European Journal of Operational Research, Elsevier, vol. 294(1), pages 295-311.
    20. Kremantzis, Marios Dominikos & Beullens, Patrick & Kyrgiakos, Leonidas Sotirios & Klein, Jonathan, 2022. "Measurement and evaluation of multi-function parallel network hierarchical DEA systems," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:298:y:2022:i:1:p:276-292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.