IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v297y2022i3p1042-1054.html
   My bibliography  Save this article

Closest targets in the slacks-based measure of efficiency for production units with multi-period data

Author

Listed:
  • Kao, Chiang

Abstract

The efficiency calculated from the conventional slacks-based measure (SBM) model is the minimum in terms of efficiency scores, and the corresponding target point requires more effort for an inefficient decision making unit (DMU) to become efficient. To find the closest target point to the assessed DMU, several models have been proposed via calculating the maximum efficiency. This paper proposes a set of models to measure the maximum SBM efficiency for DMUs with multi-period data. It is found that, when the non-Archimedean number is not in effective in claculating the radial efficiency, the maximum SBM efficiency is greater than or equal to the radial efficiency. The corresponding target point is easier for an inefficient DMU to reach. This efficiency is more reliable than radial efficiencies because the latter may be affected by the non-Archimedean number. Furthermore, the SBM efficiency can be decomposed into the product of the input and output efficiencies. Under the different-multiplier models, the DMU efficiency can also be decomposed into a weighted average of the individual year efficiencies. The factor and year that cause the unsatisfactory performance can thus be detected. A case of Taiwanese commercial banks is used as an illustration.

Suggested Citation

  • Kao, Chiang, 2022. "Closest targets in the slacks-based measure of efficiency for production units with multi-period data," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1042-1054.
  • Handle: RePEc:eee:ejores:v:297:y:2022:i:3:p:1042-1054
    DOI: 10.1016/j.ejor.2021.05.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721004781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.05.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Forsund, Finn R. & Lovell, C. A. Knox & Schmidt, Peter, 1980. "A survey of frontier production functions and of their relationship to efficiency measurement," Journal of Econometrics, Elsevier, vol. 13(1), pages 5-25, May.
    2. William Cooper & Kyung Park & Jesus Pastor, 1999. "RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA," Journal of Productivity Analysis, Springer, vol. 11(1), pages 5-42, February.
    3. Maria Silva Portela & Pedro Borges & Emmanuel Thanassoulis, 2003. "Finding Closest Targets in Non-Oriented DEA Models: The Case of Convex and Non-Convex Technologies," Journal of Productivity Analysis, Springer, vol. 19(2), pages 251-269, April.
    4. Walter Briec & Hervé Leleu, 2003. "Dual Representations of Non-Parametric Technologies and Measurement of Technical Efficiency," Journal of Productivity Analysis, Springer, vol. 20(1), pages 71-96, July.
    5. Aparicio, Juan & Pastor, Jesus T., 2014. "Closest targets and strong monotonicity on the strongly efficient frontier in DEA," Omega, Elsevier, vol. 44(C), pages 51-57.
    6. Sueyoshi, Toshiyuki & Sekitani, Kazuyuki, 2007. "Computational strategy for Russell measure in DEA: Second-order cone programming," European Journal of Operational Research, Elsevier, vol. 180(1), pages 459-471, July.
    7. Chiang Kao, 2017. "Network Data Envelopment Analysis," International Series in Operations Research and Management Science, Springer, number 978-3-319-31718-2, April.
    8. Frances Frei & Patrick Harker, 1999. "Projections Onto Efficient Frontiers: Theoretical and Computational Extensions to DEA," Journal of Productivity Analysis, Springer, vol. 11(3), pages 275-300, June.
    9. Kao, Chiang & Liu, Shiang-Tai, 2019. "Cross efficiency measurement and decomposition in two basic network systems," Omega, Elsevier, vol. 83(C), pages 70-79.
    10. O. B. Olesen & N. C. Petersen, 1996. "Indicators of Ill-Conditioned Data Sets and Model Misspecification in Data Envelopment Analysis: An Extended Facet Approach," Management Science, INFORMS, vol. 42(2), pages 205-219, February.
    11. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    12. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    13. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    14. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "Data envelopment analysis 1978–2010: A citation-based literature survey," Omega, Elsevier, vol. 41(1), pages 3-15.
    15. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    16. Zhu, Qingyuan & Wu, Jie & Ji, Xiang & Li, Feng, 2018. "A simple MILP to determine closest targets in non-oriented DEA model satisfying strong monotonicity," Omega, Elsevier, vol. 79(C), pages 1-8.
    17. Aparicio, Juan & Cordero, Jose M. & Pastor, Jesus T., 2017. "The determination of the least distance to the strongly efficient frontier in Data Envelopment Analysis oriented models: Modelling and computational aspects," Omega, Elsevier, vol. 71(C), pages 1-10.
    18. Hirofumi Fukuyama & Hiroya Masaki & Kazuyuki Sekitani & Jianming Shi, 2014. "Distance optimization approach to ratio-form efficiency measures in data envelopment analysis," Journal of Productivity Analysis, Springer, vol. 42(2), pages 175-186, October.
    19. Kao, Chiang & Liu, Shiang-Tai, 2016. "A parallel production frontiers approach for intertemporal efficiency analysis: The case of Taiwanese commercial banks," European Journal of Operational Research, Elsevier, vol. 255(2), pages 411-421.
    20. Kao, Chiang, 2016. "Efficiency decomposition and aggregation in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 255(3), pages 778-786.
    21. Ruiz, José L. & Sirvent, Inmaculada, 2016. "Common benchmarking and ranking of units with DEA," Omega, Elsevier, vol. 65(C), pages 1-9.
    22. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    23. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    24. Fare, Rolf & Knox Lovell, C. A., 1978. "Measuring the technical efficiency of production," Journal of Economic Theory, Elsevier, vol. 19(1), pages 150-162, October.
    25. W. Briec & J. B. Lesourd, 1999. "Metric Distance Function and Profit: Some Duality Results," Journal of Optimization Theory and Applications, Springer, vol. 101(1), pages 15-33, April.
    26. Briec, W. & Lemaire, B., 1999. "Technical efficiency and distance to a reverse convex set," European Journal of Operational Research, Elsevier, vol. 114(1), pages 178-187, April.
    27. Juan Aparicio & José Ruiz & Inmaculada Sirvent, 2007. "Closest targets and minimum distance to the Pareto-efficient frontier in DEA," Journal of Productivity Analysis, Springer, vol. 28(3), pages 209-218, December.
    28. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    29. Charnes, A. & Cooper, W. W. & Rhodes, E., 1979. "Measuring the efficiency of decision-making units," European Journal of Operational Research, Elsevier, vol. 3(4), pages 339-338, July.
    30. Ruiz, José L. & Segura, José V. & Sirvent, Inmaculada, 2015. "Benchmarking and target setting with expert preferences: An application to the evaluation of educational performance of Spanish universities," European Journal of Operational Research, Elsevier, vol. 242(2), pages 594-605.
    31. Kao, Chiang, 2009. "Efficiency measurement for parallel production systems," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1107-1112, August.
    32. Ando, Kazutoshi & Minamide, Masato & Sekitani, Kazuyuki & Shi, Jianming, 2017. "Monotonicity of minimum distance inefficiency measures for Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 260(1), pages 232-243.
    33. Fukuyama, Hirofumi & Maeda, Yasunobu & Sekitani, Kazuyuki & Shi, Jianming, 2014. "Input–output substitutability and strongly monotonic p-norm least distance DEA measures," European Journal of Operational Research, Elsevier, vol. 237(3), pages 997-1007.
    34. Pastor, J. T. & Ruiz, J. L. & Sirvent, I., 1999. "An enhanced DEA Russell graph efficiency measure," European Journal of Operational Research, Elsevier, vol. 115(3), pages 596-607, June.
    35. Charnes, A. & Cooper, W. W., 1984. "The non-archimedean CCR ratio for efficiency analysis: A rejoinder to Boyd and Fare," European Journal of Operational Research, Elsevier, vol. 15(3), pages 333-334, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Ya & Pan, Yongbin & Liu, Haoxiang & Wu, Huaqing & Deng, Guangwei, 2023. "Efficiency analysis of Chinese universities with shared inputs: An aggregated two-stage network DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    2. An, Qingxian & Zhang, Qiaoyu & Tao, Xiangyang, 2023. "Pay-for-performance incentives in benchmarking with quasi S-shaped technology," Omega, Elsevier, vol. 118(C).
    3. Monge, Juan F. & Ruiz, José L., 2023. "Setting closer targets based on non-dominated convex combinations of Pareto-efficient units: A bi-level linear programming approach in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1084-1096.
    4. Shi, Xiao & Wang, Libo & Emrouznejad, Ali, 2023. "Performance evaluation of Chinese commercial banks by an improved slacks-based DEA model," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    5. Sekitani, Kazuyuki & Zhao, Yu, 2023. "Least-distance approach for efficiency analysis: A framework for nonlinear DEA models," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1296-1310.
    6. Kao, Chiang, 2024. "Maximum slacks-based measure of efficiency in network data envelopment analysis: A case of garment manufacturing," Omega, Elsevier, vol. 123(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kao, Chiang, 2024. "Maximum slacks-based measure of efficiency in network data envelopment analysis: A case of garment manufacturing," Omega, Elsevier, vol. 123(C).
    2. Zhu, Qingyuan & Aparicio, Juan & Li, Feng & Wu, Jie & Kou, Gang, 2022. "Determining closest targets on the extended facet production possibility set in data envelopment analysis: Modeling and computational aspects," European Journal of Operational Research, Elsevier, vol. 296(3), pages 927-939.
    3. Kao, Chiang, 2022. "A maximum slacks-based measure of efficiency for closed series production systems," Omega, Elsevier, vol. 106(C).
    4. Juan Aparicio & Jesus T. Pastor & Jose L. Sainz-Pardo & Fernando Vidal, 2020. "Estimating and decomposing overall inefficiency by determining the least distance to the strongly efficient frontier in data envelopment analysis," Operational Research, Springer, vol. 20(2), pages 747-770, June.
    5. Aparicio, Juan & Cordero, Jose M. & Pastor, Jesus T., 2017. "The determination of the least distance to the strongly efficient frontier in Data Envelopment Analysis oriented models: Modelling and computational aspects," Omega, Elsevier, vol. 71(C), pages 1-10.
    6. Aparicio, Juan & Pastor, Jesus T., 2014. "Closest targets and strong monotonicity on the strongly efficient frontier in DEA," Omega, Elsevier, vol. 44(C), pages 51-57.
    7. Aparicio, Juan & Cordero, Jose M. & Gonzalez, Martin & Lopez-Espin, Jose J., 2018. "Using non-radial DEA to assess school efficiency in a cross-country perspective: An empirical analysis of OECD countries," Omega, Elsevier, vol. 79(C), pages 9-20.
    8. Aparicio, Juan & Garcia-Nove, Eva M. & Kapelko, Magdalena & Pastor, Jesus T., 2017. "Graph productivity change measure using the least distance to the pareto-efficient frontier in data envelopment analysis," Omega, Elsevier, vol. 72(C), pages 1-14.
    9. Zhu, Qingyuan & Wu, Jie & Ji, Xiang & Li, Feng, 2018. "A simple MILP to determine closest targets in non-oriented DEA model satisfying strong monotonicity," Omega, Elsevier, vol. 79(C), pages 1-8.
    10. Fangqing Wei & Junfei Chu & Jiayun Song & Feng Yang, 2019. "A cross-bargaining game approach for direction selection in the directional distance function," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 787-807, September.
    11. Fangqing Wei & Yanan Fu & Feng Yang & Chun Sun & Sheng Ang, 2023. "Closest target setting with minimum improvement costs considering demand and resource mismatches," Operational Research, Springer, vol. 23(3), pages 1-29, September.
    12. Juan Aparicio & Magdalena Kapelko & Juan F. Monge, 2020. "A Well-Defined Composite Indicator: An Application to Corporate Social Responsibility," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 299-323, July.
    13. Juan Aparicio & Magdalena Kapelko & Bernhard Mahlberg & Jose L. Sainz-Pardo, 2017. "Measuring input-specific productivity change based on the principle of least action," Journal of Productivity Analysis, Springer, vol. 47(1), pages 17-31, February.
    14. Ruiz, José L. & Sirvent, Inmaculada, 2019. "Performance evaluation through DEA benchmarking adjusted to goals," Omega, Elsevier, vol. 87(C), pages 150-157.
    15. Kao, Chiang, 2020. "Decomposition of slacks-based efficiency measures in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 283(2), pages 588-600.
    16. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    17. Sekitani, Kazuyuki & Zhao, Yu, 2023. "Least-distance approach for efficiency analysis: A framework for nonlinear DEA models," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1296-1310.
    18. Alcaraz, Javier & Anton-Sanchez, Laura & Aparicio, Juan & Monge, Juan F. & Ramón, Nuria, 2021. "Russell Graph efficiency measures in Data Envelopment Analysis: The multiplicative approach," European Journal of Operational Research, Elsevier, vol. 292(2), pages 663-674.
    19. Javad Vakili & Hanieh Amirmoshiri & Rashed Khanjani Shiraz & Hirofumi Fukuyama, 2020. "A modified distance friction minimization approach in data envelopment analysis," Annals of Operations Research, Springer, vol. 288(2), pages 789-804, May.
    20. Kao, Chiang, 2020. "Measuring efficiency in a general production possibility set allowing for negative data," European Journal of Operational Research, Elsevier, vol. 282(3), pages 980-988.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:297:y:2022:i:3:p:1042-1054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.